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Defect Detection in Woven Fabrics by Analysis of 
Co-occurrence Texture Features as a Function of  

Gray-level Quantization and Window Size 
P.S.H. Pallemulla, S.J. Sooriyaarachchi, C.R. de Silva and C.D. Gamage 

Abstract: In this experimental research, the effects of gray-level quantization and tiling window 
size on 22 gray-level co-occurrence matrix features were investigated in the context of automated 
woven fabric defect detection. A dataset comprising 1426 128×128 images was used, in which 
defective and the defect-free images were split in a 50:50 ratio. Experiments were carried out with 
seven quantization levels (𝐿𝐿 = 4, 8, 16, 32, 64, 128 and 256) and four window sizes (𝑁𝑁 = 8, 16, 32,
64).  The features were extracted from each image in the training set for each< 𝐿𝐿,𝑁𝑁 >combination and 
thereafter were ranked using the joint mutual information metric. Next, for each < 𝐿𝐿,𝑁𝑁 > 
combination, a k-nearest neighbour classifier was trained, first with only the highest-ranking feature 
and thereafter iteratively by adding features of lower ranks. It was observed that a minimum of nine 
features were needed to achieve an acceptable (>90%) F1 score for any < 𝐿𝐿,𝑁𝑁 >combination, except 
when 𝑁𝑁 is relatively large. The two features that contribute to improving the F1 score for any 
< 𝐿𝐿,𝑁𝑁 >combination were found to be Homogeneity I and Homogeneity II. It was also noted that 
using an 8×8 window on images with 128 gray levels resulted in a practically usable high F1 score 
(96.39%) with the least number of features (14). 

Keywords: Fabric defect detection, GLCM, Gray-level quantization, Window size 

1. Introduction 
Almost 30% of fabric defects go unnoticed to 
the human eye during a typical fabric 
inspection process in the apparel 
manufacturing industry [19]. Undetected 
defects can result in large losses in the 
production as they affect the quality of the 
output and often result in the rejection of 
garments at the final quality control stages. 
Many researchers have attempted to solve this 
issue by using computer vision-based 
techniques. However, due to the diversity of 
properties in different fabric types used in the 
industry and their sensitivity to the algorithms 
used, most of these studies limit their scope to 
defect detection in a few types of fabric using 
few select algorithms. 

Some more common types of defects in fabrics 
manifest as local anomalies in the fabric texture. 
Following this assumption, texture analysis has 
been widely used to separate defective areas of 
the fabric from the defect-free area. Among the 
many methods used, the gray-level co-
occurrence matrix (GLCM) [1] has been 
frequently used to calculate textural features 
owing to its ability to discriminate between 
textures that are visually easily separable. 

An important preprocessing step that is known 
to improve the textural features estimated from 
the GLCM is gray-level re-quantization. At 
present, studies on the effect of the gray-level 

quantization on texture classification have been 
conducted for irregular textures in the 
geological [5] [7] and biomedical [6] [8] [9] 
fields, but not for near-regular textures such as 
those in textile samples. All these studies 
recommend using fewer gray levels in order to 
obtain better texture classification accuracy, 
whereas two of them [5][6] recommend gray-
level quantization values that are dataset-
specific. Therefore, it is clear that the current 
available literature is limited to irregular 
textures. As woven fabric has near-regular 
texture [18], we apply our method and conduct 
our analysis on such textures. 
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Motivated by the absence of a basis upon which 
an optimal gray-level quantization level can be 
reliably chosen for co-occurrence feature 
extraction in plain-weave fabrics, this study 
aims to investigate the effect of different values 
for gray level quantization on fabric defect 
detection. The study uses multiple window 
sizes for partitioning the image into smaller 
tiles, which is a common practice for GLCM in 
this domain. Moreover, the behaviors of 22 
textural features that can be computed from the 
GLCM are also considered in the classification. 
The contributions of this paper are the 
highlighting of co-occurrence features that 
contribute most to the classification, the 
determination of the least number of features 
required to achieve appreciable detection 
accuracy and the establishment of an objective 
framework for the choice of the optimal 
quantization/window-size combination in 
future research on plain-weave fabric defect 
detection. 
 
2. Materials and Methods 

 
2.1. Dataset 
Our dataset was created as follows. From the 
195 512x512-pixel images in the publicly 
available Cotton Incorporated dataset [20], the 
images of unpatterned plain-weave fabrics 
containing Broken End, Broken Pick, Burl, 
Coarse End, Coarse Pick, Dirty Yarn, Foreign 
Yarn, Knot, Oil Spot and Slubs were selected. 
They were randomly cropped with a 128x128 
window and annotated with the support of 
domain experts. As the defect-free images 
obtained thus outnumbered the defective 
images, the set of defect-free images was 
undersampled to obtain a perfectly balanced 
dataset comprising 1426 images. 
 

2.2. Gray-level Quantization 
The gray level depth (𝐿𝐿) in an image has an 
effect on the textural features calculated from 
the GLCM. Many research encourage gray-level 
depth reduction through down sampling due to 
multiple reasons. First, a lower depth requires 
less computational time and cost and thereby 
facilitates real-time processing with limited 
resources. Additionally, when similar gray 
levels are merged for reduction, the effect of 
noise on the image is also averaged to a certain 
degree [5]. Similarly, the down-sampling 
process also mitigates undesirable effects of  
uneven illumination [6].   All these features 
contribute in reducing the extent of information 
included in the sample to match the extent 

required in isolating defects from other natural 
variation in the fabric texture. 
 
In this study, the classification accuracy of co-
occurrence textural features for seven possible 
choices for uniform gray-level quantization 
(𝐿𝐿 = 4, 8, 16, 32, 64, 128 and 256) are 
studied.The uniform quantization scheme has 
been used in several studies [5] [7] [9]. 
 
2.3. Window Size 
In fabric defect detection, GLCMs are calculated 
for non-overlapping subregions of the image 
since most defects are extremely small 
compared to image size. The usual approach is 
to split the image into tiles using a 𝑁𝑁 × 𝑁𝑁 
sliding window.  
Theoretically, larger windows provide a more 
accurate classification of texture [7], but having 
a window smaller than the smallest defect 
ensures its detection [4]. Using a smaller 
window also means splitting the image into 
smaller tiles and hence the computation of 
more GLCMs, thereby increasing the 
computational cost further. Even though the 
largest window always provides the fastest 
speed of computation since it splits the image 
to the least number of tiles, it will fail to detect 
defects that are comparatively much smaller 
than its size. 
 
To determine the window size that is 
sufficiently large so as to provide an accurate 
estimation of texture without ignoring the 
distortion at the defect, four window sizes (𝑁𝑁 =
8, 16, 32, 64) are studied. 
 
2.4. Gray-level Co-occurrence Matrix 
The GLCM is used to extract the second-order 
statistics of an image. The matrix represents the 
number of occurrences of gray-level pairs, i and 
j, that are d distance apart along a direction 𝜃𝜃. 
Hence, the GLCM captures the frequency of 
spatial relationships among pixels in textured 
images. The GLCM is defined as [1] 
 
𝐶𝐶(𝑖𝑖, 𝑗𝑗) = ||  {[𝑥𝑥1, 𝑦𝑦1), (𝑥𝑥2, 𝑦𝑦2)]} | 𝑥𝑥2 − 𝑥𝑥1 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 

𝑦𝑦2 − 𝑦𝑦1 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝐼𝐼(𝑥𝑥1, 𝑦𝑦1) = 𝑖𝑖, 𝐼𝐼(𝑥𝑥2, 𝑦𝑦2) = 𝑗𝑗||                       
                                                                                   …(1) 
where (𝑥𝑥1, 𝑦𝑦1) and (𝑥𝑥2, 𝑦𝑦2) are pixels, 𝐼𝐼(∙) is the 
gray level of the pixel and || ∙ || is the number 
of pixel pairs that satisfy the conditions. 
 
Studies on textile images of multiple 
resolutions have revealed that a distance 𝑑𝑑 of 
one pixel gives better classification accuracy 
[2]. For this reason and in order to allow 
relative comparisons to be made with respect 
to the parameters under consideration, a 
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distance of one pixel is used in this study. For 
the sake of making the textural features 
invariant to rotation, the GLCMs of all 
possible directions ( ) are 
obtained from a tile, and the features 
calculated from them are averaged [1] [4]. 
Prior to the calculation of features, the GLCMs 
derived from each tile are normalized. 
 

2.5. Extracting the Feature Vector 
In the interest of improving the detection 
accuracy, the textural feature vector extracted 
from each image is compared with that of a 
defect-free image of the same fabric. For 
referential clarity, images belonging to the latter 
group will be known as reference images and 
images in the dataset will be known as query 
images. 
 
The procedure that is used to extract the 
textural feature vector from a query image and 
compare it with the fabric’s reference image is 
detailed in the rest of this subsection. Apart 
from the gray scaling and gray-level re-
quantization, no additional preprocessing was 
applied to the images, in order to preserve all 
micro-level features in their natural form. 
 
An image that is re-quantized to  gray levels 
and tiled with a window size of  results 
in a set of of  tiles, where  is given by 
 
                               …(2) 

 
Four GLCMs, one for each , are derived from 
each tile.  The 22 textural features as presented 
in [9] are calculated from each GLCM and the 
same features calculated from the four GLCMs 
of one tile are averaged to ensure rotational 
invariance. This results in each of the  tiles 
being described by a 22-element feature vector, 
given by the matrices and for the 
reference image and query image, respectively, 
in Figure 1. The aforementioned set of 22 
features includes GLCM features such as 
energy, entropy, correlation II and 
homogeneity II [2] [12] that are commonly used 
in fabric defect detection. The rest of the 
features are used for texture classification in 
general [4]-[8]. 
 
For the defect-free reference image of the fabric, 
it is assumed that the same feature across all  
tiles is similar in value, because woven fabrics 
have near-regular texture. Therefore, to 
represent the reference image by one textural 

feature vector ( ), each feature is averaged 
across all  tiles. 
 
A query image may either be defect-free or 
defective. If a query image is defective, 
distortions in the texture of a tile, caused by the 
presence of a defect, lead to one or more 
textural features having abnormally high or 
low values. Therefore, both the maximum of 
each textural feature ( ) and the 
minimum ( ) are compared with  
by calculating the absolute deviation between 
them. The maximum absolute deviation is 
taken as the feature vector of the query image. 
 

 
                                        …(3) 

 

 

 
According to a previous study [12], a 
comparison of the feature average across tiles 
compared with the feature maximum or 
minimum across tiles provides a feature set 
suitable for more accurate classification. 
 
2.6. Feature Ranking 
Some features in high-dimensional feature 
spaces may carry non-discriminative or 
correlated information from the problem 
domain’s perspective. These features do not 
contribute to the classifier performance and, in 
some cases, could even influence it negatively 
by biasing the classifier on directions outside 
the problem domain. Feature ranking 
determines the features which are most 
discriminative and relevant to a given classifier 
model. 
 
In order to separate the feature ranking process 
from the classification, joint mutual information 
(JMI) is used to rank features in this study. The 
classifier-independent features selected thus are 

Figure 1 - Extracting and Comparing the Feature 
Vector of a Query Image ( ) and Reference 

Image ( ) to get the Relative Textural 
Feature Vector
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generic. Additional advantages of using JMI are 
the lower chance of overfitting during 
classification and speed of computation [10] 
compared to classifier-dependent techniques. 
JMI is used from among other classifier-
independent methods as it provides the best 
trade-off between accuracy and stability [11]. 

The mutual information  between two random 
variables,  and  is defined as 
 

 

 
where  is their joint probability density 
function and  and  are their respective 
marginal probabilities. When the mutual 
information is conditioned by a third variable , 
it can be expressed as 

 

     …(5) 
 

The JMI score finds the feature that adds the 
most new information to a set of already 
selected features ( ). The score is 
formulated for a feature under investigation ( ) 
as 
 

 
 
where  is the target class. 
 
2.7. Detection 
Past studies on texture analysis [7] [8] [9] 
similar to our work, have opted to use Fisher’s 
linear discriminant analysis (FLDA) for 
classification. According to the earliest study 
among these [7], the reason for choosing FLDA 
over a machine learning technique was the 
scarcity of samples in their dataset. Due to the 
dataset used in this research having an 
adequate number of samples for a binary 
classification problem and due to the ubiquity 
and success of machine learning techniques at 
present, this study uses the k-nearest neighbour 
(k-NN) classifier for classification with a 
standard five-fold cross-validation (FFCV) to 
determine the optimal number of neighbours. 
 
Since the classes in the dataset are balanced, the 
k-NN is an acceptable algorithm for the 
classification. The fact that it is a non-

parametric algorithm comes as an advantage. 
When the k-NN is provided with a sample to 
classify, it calculates the dissimilarity between 
said sample and each sample in the training set 
within the feature space. Here, the Manhattan 
distance is used as the dissimilarity measure. 
The Manhattan distance between two samples 

 and is given by, 
 

where  and  are the feature vectors of  and 
. Then, the nearest  

samples are considered and the test sample is 
assigned the majority class. 
 

The F1 score is used to measure classifier 
performance. Accuracy has also been calculated 
for the purpose of comparing our results with 
those in recent studies. The definitions of these 
metrics are given below: 

 

 

 

 
 
where  and  are the true positives, 
false positives, true negatives and false 
negatives, respectively. 
 

2.8. Assessment of Optimal Feature Set 
The dataset is split into the training set which 
contains 1018 images and the test set containing 
408 images. The reference images used in the 
feature extraction are not considered part of the 
dataset. 
 

For notational clarity, let  denote a 
single combination of a gray level and the 
window size. 

 

 

Figure 2 - Feature Ranking with JMI to Obtain 
the Optimal Feature Set i.e. the Set of Features 

that gives the Best Classification F1 Score 
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The experiments were performed as follows. 
The feature vectors for all < 𝐿𝐿,𝑁𝑁 > 
combinations were extracted using the method 
in Figure 1 for all images in the training set. For 
each < 𝐿𝐿,𝑁𝑁 >, JMI, given by equation 6, was 
used to rank the 22 features in the feature 
vector. The ranked features were normalized to 
the range −1 to 1. For each < 𝐿𝐿,𝑁𝑁 >, a binary 
classification was carried out using a k-NN 
classifier with an increasing number of features, 
starting with the features of the highest rank 
and adding features of lower ranks until the full 
feature set is used for the classification as 
shown in Figure 2. The classifier performance is 
measured using the F1 score, given by equation 
10. The set of features which produced the best 
F1 score is selected as the optimal feature set. 
 
3. Results and Discussion 

 
This section is split into two subsections. 
Subsection 3.1 discusses the results presented in 
Tables 1 and 2, and Figure 3, which shows the 
outcomes of the classification of the full dataset. 
Subsection 3.2 discusses the results presented in 
Figure 4, which shows the outcomes of the 
classification on subsets of the dataset that 
represent each defect. 
 

3.1. Analysis of Results for the Full Dataset 
From the results of the JMI ranking of each 
texture feature at each gray level quantization 
and window size in Table 1, it is clear that a 
subset of features, most prominently energy 
(P8), homogeneity I (P10), homogeneity II (P11) 
and maximum probability (P12) have 
considerably higher JMI scores than the rest of 
the features. The higher scores are mostly 
noticeable when the window size is smaller and 
fewer gray levels are used. The reason for this 
most likely stems from the texture 
characteristics of the fabric images. 
 

Owing to the near-regularity of textures that 
occur in woven fabrics, the pixel intensities in 
their grayscale images will only take a few 
values that repeat throughout the image. This 
results in a GLCM in which a few elements are 
comparatively much larger than others. These 
elements correspond to the dominant intensity 
pairs occurring in the images. When the 
number of gray levels are reduced, pixels that 
contain similar intensities will be merged, thus 
making the GLCM fairly sparse and at the same 
time increasing the magnitude of the GLCM 
elements that correspond to the dominant 
intensity pairs at those gray levels. The 
occurrence of a defect will either introduce new 

intensities or disturb the pattern of co-
occurrence in its vicinity, hence resulting in 
GLCM elements of less magnitude in the tile(s) 
in which the defect occurs. 
 

As the energy (P8) is simply the sum of the 
squares of the GLCM elements, the energy of 
GLCMs of defect-free tiles will be 
comparatively higher than those of defective 
tiles. Because the squaring of the elements 
further emphasizes the difference, it should 
theoretically be able to distinguish between 
defect-free tiles and tiles with defects that 
introduce new intensities to the image. This is 
presumably the reason why energy has a higher 
score. The maximum probability (P12) extracts 
the number of occurrences of the most 
frequently-occurring pixel pair i.e. the 
maximum of the GLCM and therefore behaves 
similar to the energy. The two homogeneity 
features (P10 and P11) not only depend on the 
magnitude of the GLCM elements, but also on 
their row and column indices. In other words, 
the homogeneity features will depend on the 
difference of the intensities of pixel pairs as 
well as the number of occurrences. Therefore, 
P10 and P11 should be able to detect tiles with 
defects that change the contrast of the image in 
their vicinity. 
 

From the results of the k-NN classification on 
the test set with an increasing number of 
features in Figure 3, it is clear that using a very 
large window, relative to the image size, will 
invariably result in lower F1 scores. This result 
is contrary to the statement in [5] that larger 
windows, in theory, provide more accurate 
classifications. The reason smaller windows 
produce better results in this study is the small 
size of most defects that commonly occur in 
fabrics. Using larger windows will fail to 
capture the texture distortion in the locality of a 
defect which is significantly smaller than the 
defect-free area. The claim that the window size 
should be smaller than the defective area [4] 
cannot be verified here, as the smallest window 
size used in this study is 8×8 and there are 
much smaller defects in the dataset. However, 
it is believed that using overly small windows 
will have a negative effect on the classification 
since even subtle differences in the texture that 
are not considered defects will affect the 
textural features being calculated. These subtle 
differences might arise as a result of the 
changeable nature of the yarn structure or stray 
yarn fibres sticking out of the fabric. 
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It should also be noted in Figure 3 that, even if 
a greater number of gray levels is used, having 
a sufficiently large textural feature set will 
eventually result in acceptably accurate 
classifications (with F1 scores > 90%) given that 

the window size used for tiling is considerably 
small. This finding is in contrast with the result 
in [9] which claims such a non-variation is only 
present if the textural features 

 

 

 
Window size = 8✕✕8 

L P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 
L = 4 0.202 0.105 0.196 0.289 0.186 0.161 0.107 0.308 0.113 0.339 0.352 0.322 0.179 0.144 0.183 0.254 0.131 0.197 0.271 0.163 0.256 0.259 
L = 8 0.164 0.069 0.125 0.218 0.118 0.092 0.063 0.292 0.078 0.280 0.280 0.352 0.104 0.105 0.118 0.223 0.036 0.165 0.187 0.201 0.190 0.190 
L = 16 0.131 0.031 0.107 0.219 0.088 0.065 0.059 0.249 0.056 0.226 0.247 0.347 0.053 0.063 0.091 0.130 0.000 0.183 0.124 0.203 0.145 0.145 
L = 32 0.106 0.013 0.066 0.138 0.025 0.039 0.019 0.256 0.000 0.218 0.215 0.303 0.018 0.032 0.062 0.101 0.009 0.193 0.076 0.200 0.127 0.128 
L = 64 0.117 0.022 0.146 0.140 0.040 0.096 0.026 0.214 0.000 0.233 0.210 0.227 0.048 0.098 0.111 0.157 0.000 0.190 0.067 0.273 0.135 0.141 
L = 128 0.198 0.158 0.290 0.109 0.136 0.147 0.171 0.287 0.000 0.279 0.300 0.136 0.168 0.154 0.162 0.136 0.000 0.053 0.263 0.350 0.327 0.329 
L = 256 0.154 0.204 0.284 0.120 0.205 0.208 0.209 0.266 0.000 0.281 0.317 0.104 0.247 0.168 0.215 0.152 0.217 0.198 0.288 0.351 0.338 0.338 

Window size = 16 ✕✕16 
L P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 
L = 4 0.218 0.089 0.219 0.244 0.205 0.180 0.073 0.290 0.093 0.363 0.353 0.333 0.095 0.103 0.177 0.260 0.198 0.134 0.262 0.118 0.268 0.271 
L = 8 0.197 0.060 0.199 0.217 0.161 0.165 0.060 0.253 0.020 0.322 0.349 0.336 0.068 0.057 0.157 0.207 0.130 0.132 0.234 0.209 0.204 0.204 
L = 16 0.127 0.062 0.213 0.185 0.114 0.109 0.042 0.220 0.064 0.265 0.241 0.328 0.053 0.048 0.137 0.142 0.194 0.171 0.205 0.220 0.204 0.203 
L = 32 0.142 0.038 0.164 0.163 0.124 0.089 0.034 0.195 0.050 0.270 0.258 0.327 0.028 0.028 0.113 0.131 0.066 0.180 0.148 0.199 0.176 0.176 
L = 64 0.152 0.022 0.231 0.123 0.087 0.113 0.029 0.215 0.086 0.229 0.208 0.229 0.044 0.091 0.181 0.122 0.013 0.197 0.028 0.203 0.163 0.163 
L = 128 0.157 0.107 0.320 0.136 0.162 0.205 0.134 0.297 0.223 0.301 0.255 0.213 0.197 0.123 0.154 0.157 0.000 0.057 0.097 0.274 0.281 0.278 
L = 256 0.123 0.167 0.382 0.118 0.235 0.276 0.162 0.317 0.248 0.344 0.318 0.176 0.225 0.111 0.214 0.213 0.219 0.202 0.106 0.339 0.328 0.325 

Window size = 32 ✕✕32 
L P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 
L = 4 0.172 0.110 0.251 0.254 0.159 0.199 0.120 0.274 0.036 0.321 0.322 0.276 0.104 0.117 0.184 0.195 0.183 0.147 0.194 0.104 0.274 0.273 
L = 8 0.161 0.071 0.248 0.203 0.168 0.167 0.072 0.259 0.032 0.327 0.317 0.328 0.066 0.086 0.148 0.132 0.110 0.129 0.193 0.213 0.273 0.273 
L = 16 0.132 0.046 0.230 0.184 0.141 0.130 0.078 0.235 0.082 0.286 0.281 0.268 0.050 0.079 0.105 0.144 0.092 0.092 0.128 0.168 0.216 0.216 
L = 32 0.091 0.055 0.222 0.129 0.099 0.077 0.074 0.199 0.058 0.282 0.282 0.270 0.026 0.071 0.095 0.100 0.078 0.100 0.163 0.211 0.189 0.189 
L = 64 0.120 0.025 0.258 0.169 0.122 0.088 0.033 0.164 0.025 0.230 0.214 0.254 0.041 0.071 0.165 0.139 0.099 0.130 0.096 0.122 0.167 0.167 
L = 128 0.143 0.087 0.359 0.130 0.172 0.125 0.122 0.243 0.184 0.250 0.290 0.237 0.198 0.110 0.180 0.126 0.028 0.078 0.089 0.251 0.205 0.206 
L = 256 0.149 0.190 0.427 0.135 0.217 0.184 0.212 0.304 0.279 0.344 0.325 0.225 0.254 0.102 0.157 0.112 0.161 0.179 0.155 0.297 0.298 0.301 

Window size = 64 ✕✕64 
L P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 
L = 4 0.107 0.000 0.207 0.095 0.117 0.104 0.019 0.194 0.000 0.219 0.216 0.149 0.022 0.031 0.103 0.057 0.123 0.033 0.085 0.051 0.152 0.152 
                       
L = 8 0.107 0.000 0.167 0.083 0.120 0.088 0.014 0.163 0.013 0.239 0.212 0.155 0.027 0.048 0.099 0.079 0.085 0.038 0.108 0.107 0.180 0.180 
L = 16 0.085 0.017 0.186 0.070 0.153 0.074 0.000 0.128 0.019 0.236 0.239 0.113 0.041 0.037 0.058 0.079 0.047 0.018 0.042 0.063 0.155 0.155 
L = 32 0.110 0.000 0.202 0.096 0.119 0.044 0.005 0.168 0.000 0.256 0.241 0.143 0.048 0.006 0.086 0.062 0.054 0.068 0.072 0.110 0.156 0.156 
L = 64 0.056 0.009 0.227 0.056 0.112 0.043 0.000 0.098 0.024 0.133 0.145 0.084 0.024 0.034 0.083 0.032 0.042 0.046 0.047 0.000 0.078 0.078 
L = 128 0.041 0.002 0.217 0.057 0.076 0.036 0.028 0.049 0.087 0.110 0.089 0.061 0.080 0.046 0.052 0.031 0.011 0.014 0.049 0.036 0.095 0.095 
L = 256 0.045 0.035 0.268 0.066 0.055 0.010 0.040 0.050 0.142 0.118 0.135 0.042 0.119 0.045 0.064 0.019 0.039 0.063 0.068 0.033 0.057 0.057 

Figure 3 - F1 Scores Obtained for the Test Set after Classification by k-NN with an Increasing Number of 
Features Added in the Order of their Ranks for each < 𝐋𝐋,𝐍𝐍 > 𝐂𝐂ombination 

 Table 1 - JMI Rankings for each Texture Feature (P1 to P22) for each Gray Level (L = 4 to L = 256) at 
Window Sizes (N = 8×8, 16×16, 32×32 and 64×64) 
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used in the classification had not been 
averaged over multiple orientations of the 
GLCM. The reason for the difference might be 
that the textures analysed in [9] were natural, 
irregular textures whereas the textures 
analysed in this study are near-regular and 

thus respond differently to the various 
orientations of the pixel pairs compared when 
deriving the GLCM.  
 
The maximum F1 scores that were obtained 
for each < 𝐿𝐿,𝑁𝑁 > combination and the features 

 
Window 

size 
Gray 

Levels 
Max F1 
score 

No. of 
features used P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 

N = 8x8 L = 4 97.57% 20 10 22 12 5 13 17 21 4 20 2 1 3 15 18 14 9 19 11 6 16 8 7 
  L = 8 96.62% 22 12 20 13 6 14 18 21 2 19 3 4 1 17 16 15 5 22 11 10 7 9 8 
  L = 16 97.12% 21 10 21 13 5 15 16 18 2 19 4 3 1 20 17 14 11 22 7 12 6 8 9 
  L = 32 97.35% 22 10 20 13 7 17 15 18 2 22 3 4 1 19 16 14 11 21 6 12 5 9 8 
  L = 64 97.57% 19 12 20 8 10 18 15 19 4 21 2 5 3 17 14 13 7 22 6 16 1 11 9 
  L = 128 96.39% 14 9 13 5 19 16 15 10 6 21 7 4 18 11 14 12 17 22 20 8 1 3 2 
  L = 256 96.67% 21 18 15 6 20 14 13 12 8 22 7 4 21 9 17 11 19 10 16 5 1 2 3 
N = 16x16 L = 4 98.30% 18 11 21 10 9 12 14 22 4 20 1 2 3 19 18 15 8 13 16 7 17 6 5 
  L = 8 98.79% 19 12 20 11 6 14 13 19 4 22 3 1 2 18 21 15 8 17 16 5 7 9 10 
  L = 16 97.58% 22 15 19 6 11 16 17 22 4 18 2 3 1 20 21 14 13 10 12 7 5 8 9 
  L = 32 97.82% 18 12 19 9 10 14 16 20 5 18 2 3 1 21 22 15 13 17 6 11 4 7 8 
  L = 64 97.82% 17 11 21 1 12 16 14 19 4 17 2 5 3 18 15 8 13 22 7 20 6 9 10 
  L = 128 97.82% 17 14 19 1 16 12 10 17 3 8 2 7 9 11 18 15 13 22 21 20 6 4 5 
  L = 256 98.30% 21 19 17 1 20 10 8 18 7 9 2 6 16 11 21 13 14 12 15 22 3 4 5 
N = 32x32 L = 4 97.32% 22 14 19 8 7 15 9 17 4 22 2 1 3 21 18 12 10 13 16 11 20 5 6 
  L = 8 98.07% 21 13 20 7 9 11 12 19 6 22 2 3 1 21 18 14 15 17 16 10 8 5 4 
  L = 16 97.60% 21 12 22 5 8 11 13 20 4 18 1 2 3 21 19 15 10 16 17 14 9 6 7 
  L = 32 98.07% 22 15 21 4 10 13 17 18 6 20 2 1 3 22 19 14 11 16 12 9 5 7 8 
  L = 64 97.83% 22 14 22 1 5 13 17 20 9 21 3 4 2 19 18 8 10 15 11 16 12 7 6 
  L = 128 98.29% 16 13 20 1 14 12 16 17 5 10 4 2 6 9 18 11 15 22 21 19 3 8 7 
  L = 256 98.30% 20 19 13 1 20 11 14 12 4 8 2 3 10 9 22 17 21 16 15 18 7 6 5 
N = 64x64 L = 4 86.98% 21 10 21 3 13 9 11 20 4 22 1 2 7 19 18 12 15 8 17 14 16 6 5 
  L = 8 91.63% 22 11 22 5 15 8 13 20 6 21 1 2 7 19 17 12 16 14 18 9 10 3 4 
  L = 16 89.05% 20 9 21 3 12 6 11 22 7 19 2 1 8 17 18 14 10 15 20 16 13 5 4 
  L = 32 88.83% 20 10 21 3 11 8 18 20 4 22 1 2 7 17 19 12 15 16 14 13 9 5 6 
  L = 64 91.85% 21 11 20 1 10 4 14 22 5 19 3 2 6 18 16 7 17 15 13 12 21 8 9 
  L = 128 92.04% 14 15 22 1 10 8 16 19 12 6 2 5 9 7 14 11 18 21 20 13 17 3 4 
  L = 256 91.36% 22 15 19 1 7 12 22 17 13 2 5 3 16 4 14 8 21 18 9 6 20 11 10 

No. of times used in classification:  26 27 24 23 21 23 22 24 24 26 25 27 27 28 28 28 25 27 27 24 25 27 
No. of times ranked among top 9: 2 0 22 11 6 2 0 26 5 28 28 23 5 0 4 5 1 6 9 18 26 25 

 

 

used for the corresponding classification, 
along with their ranks, are given in Table 2. It 
can be seen that the highest F1 score (98.79%) 
is achieved when using a 16×16 window on 
images with 8 gray levels. However, this F1 
score is not significantly different from the 

maximum F1 scores achieved at other 
< 𝐿𝐿,𝑁𝑁 >combinations (which have F1 scores 
>96%) excluding those obtained with the 
largest window size. It should be noted, 
though, that to achieve this F1 score for some 
< 𝐿𝐿,𝑁𝑁 >combinations, almost all features had 

Table 2 - Maximum F1 Scores Obtained for each < 𝐋𝐋,𝐍𝐍 > Combination and the Number of Features used 
in the Classification. The Rankings of each of the 22 Features are also shown. The Numbers in the Shaded 
Cells are the Ranks of the Features that were used for the Classification that Resulted in the Maximum F1 

score. 

 

Figure 4 - The Number of Features Required for Detecting each Defect Type with the Maximum F1 Score 
at each < 𝐋𝐋,𝐍𝐍 > 𝐂𝐂ombination. The Number of Features is Indicated by the Size of the Circular Markers 

and the F1 Score is Indicated by the Colour of the Circular Markers 
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to be used. The combination that uses the least 
number of features (14) to produce an 
acceptable accuracy is 128 gray levels and a 
8×8 window. The F1 score of the classification 
in this case is 96.39%, which is only 2.4% less 
than the maximum. 
 

It can also be seen from Figure 3 that using 9 
features in the classification will increase the 
F1 score above 90% for any  
< 𝐿𝐿,𝑁𝑁 >combination, excluding the 𝑁𝑁 = 64×64 
case. Therefore, it can be inferred that at least 9 
feature computations are required to reliably

 
Research 

paper 
Defect 
types Method Classifier Performance Dataset 

size Accuracy F1 Score 
Our 

approach 10 GLCM-based feature 
extraction k-NN 0.9877 0.9879 1426 

[13] 4 Computation of gray-level 
statistics Naïve Bayes 0.9962 - 128 

[14] NM Extraction of visual saliency 
map features Support vector machines 0.98 - 1140 

[15] 89 Yarn tracking with UNet 
convolutional neural network 

Minimum Covariance 
Determinant (MCD) 0.96 - 1431 

[16] 5 Haar-like feature extraction Cascade classifier - 0.96 NM 

[17] 7 Thresholding-based 
segmentation 

Classified based on 
detected contour 0.95 - NM 

 
achieve a F1 score greater than 90%, given that 
the window size is relatively small. From 
Table 2, judging by the features that are 
consistently ranked among the top 9 features 
for a majority of < 𝐿𝐿,𝑁𝑁 >combinations, it can 
be inferred that the features P10, P11, P21, P8, 
P22, P12, P3, P20 and P4 are most likely to 
improve the classification F1 score for any  
< 𝐿𝐿,𝑁𝑁 >combination. It is also clear that the 
two features P10 and P11 are crucial in raising 
classification accuracy, as they have been 
ranked among the top 9 features for all 
< 𝐿𝐿,𝑁𝑁 >combinations. A set of 9 features is 
much less in number than the 17 features that 
another study [9] has proposed. The reduction 
in the number of features might also be a 
consequence of the near-regularity of woven 
fabric texture compared to the natural, 
irregular textures of ultrasound images used 
in the aforementioned study. The performance 
comparison of several commonly-used 
classifiers with the k-NN are given in Table 3 
showing the superior performance of the  
k-NN for our feature set, which is the reason 
for its choice in this analysis. All classifiers had 
been optimized by performing a grid search 
and FFCV. 
 
3.2. Analysis of Results for Each Defect 
This subsection compares the results of the 
classification on each defect type as shown in 
Figure 4 with inferences made in the previous 
subsection. 
 

 
It is immediately apparent that the Dirty Yarn 
defect is classified with a very high F1 score 
for all window sizes and all quantization 
levels. Judging by the sample given in Figure 
5, the defect is distinct enough to not merge 
with the surrounding defect-free region 
during the gray-level down sampling and 
spans over the fabric in a tapering manner 
such that the textural information it produces 
can be captured by both large and small 
windows. These properties are not prominent 
in the other defects shown in the same figure. 

 
Classifier Accuracy F1 score 

k-NN 98.77% 98.79% 
Support Vector 
Machine 96.81% 96.84% 

Multi-layer 
Perceptron 93.87% 93.86% 

Random Forest 84.56% 84.21% 
Naïve Bayes 73.28% 65.83% 

 
Even though the 64×64 window generally 
produces lower classification F1 scores, it can 
be seen that the Dirty Yarn defect is perfectly 
classified for all quantization levels, whereas 
Oil Spot and Burl are perfectly classified for 
six of the seven quantization levels when 
using this window size. Observation of 
samples of these defects as presented in Figure 
5 shows that these defects are all “global” 
defects i.e.  ones that occupy a considerable 
area of the image. The issue of large windows 

Table 4 - Comparison of Our Approach with Similar Studies 

 

Table 3 - Performance of Different Classifiers 
on the Optimal Feature Set Extracted at 𝐋𝐋= 8 

and 𝑵𝑵=16X16 

 

 

not significantly capturing the texture 
distortion created by small defects does not 
apply for such defects. 
 
Regarding the number of features required for 
optimal F1 score, it can be inferred that Oil 
Spot, Slubs and Coarse End require many 
features to quantify the texture information 
they produce at any < 𝐿𝐿, 𝑁𝑁 >combination, 
whereas all other defects can be classified 
accurately with fewer features. 
 
It is also clear from Figure 4 why the overall 
classification F1 score was highest at 𝑁𝑁 = 16 
and 𝐿𝐿 = 8, as all defects except for Broken Pick 
and Coarse End, have been classified with 
near-perfect F1 scores.  However, it should be 
noted that, even though the least number of 
features for an appreciable F1 score for the 
overall classification is obtained at 𝑁𝑁 = 8 × 8 
and  𝐿𝐿    =  128, the least number of features 
required to achieve maximum F1 score for 
each defect varies considerably. 
 
A comparison of the best performance 
achieved in this study for the full dataset is 
compared with the results of similar studies in 
Table 4. 

 

 
 
4. Conclusions 

 
The aim of this research was to analyze the 
effect of the window size and the number of 
gray levels on varying sets of GLCM features. 
 

 The results of the experimental study show 
that a set of 9 features is sufficient to reach an 
F1 score exceeding 90%. Out of these 9 
features, Homogeneity I and Homogeneity II 
have contributed to improving the 
classification accuracy regardless of the size of 
the window or its number of gray levels. The 
combination that produced an acceptable F1 
score (96.39%) using the least number (14) of 
features was 128 gray levels and a 8×8 
window. Another outcome of the study is the 

result that the use of a greater number of gray 
levels will still produce reasonably high F1 
scores if a greater number of features are used 
in the classification. Furthermore, the fact that 
large windows impact the classification 
accuracy negatively has been confirmed. This 
work has shown that the requirements for 
classifying near-regular textures with the 
GLCM differ from those for classifying 
irregular textures, mainly in that fewer 
features can be used to achieve acceptable 
classification accuracies. 
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not significantly capturing the texture 
distortion created by small defects does not 
apply for such defects. 
 
Regarding the number of features required for 
optimal F1 score, it can be inferred that Oil 
Spot, Slubs and Coarse End require many 
features to quantify the texture information 
they produce at any < 𝐿𝐿, 𝑁𝑁 >combination, 
whereas all other defects can be classified 
accurately with fewer features. 
 
It is also clear from Figure 4 why the overall 
classification F1 score was highest at 𝑁𝑁 = 16 
and 𝐿𝐿 = 8, as all defects except for Broken Pick 
and Coarse End, have been classified with 
near-perfect F1 scores.  However, it should be 
noted that, even though the least number of 
features for an appreciable F1 score for the 
overall classification is obtained at 𝑁𝑁 = 8 × 8 
and  𝐿𝐿    =  128, the least number of features 
required to achieve maximum F1 score for 
each defect varies considerably. 
 
A comparison of the best performance 
achieved in this study for the full dataset is 
compared with the results of similar studies in 
Table 4. 
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The aim of this research was to analyze the 
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gray levels on varying sets of GLCM features. 
 

 The results of the experimental study show 
that a set of 9 features is sufficient to reach an 
F1 score exceeding 90%. Out of these 9 
features, Homogeneity I and Homogeneity II 
have contributed to improving the 
classification accuracy regardless of the size of 
the window or its number of gray levels. The 
combination that produced an acceptable F1 
score (96.39%) using the least number (14) of 
features was 128 gray levels and a 8×8 
window. Another outcome of the study is the 

result that the use of a greater number of gray 
levels will still produce reasonably high F1 
scores if a greater number of features are used 
in the classification. Furthermore, the fact that 
large windows impact the classification 
accuracy negatively has been confirmed. This 
work has shown that the requirements for 
classifying near-regular textures with the 
GLCM differ from those for classifying 
irregular textures, mainly in that fewer 
features can be used to achieve acceptable 
classification accuracies. 
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