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Temporal Transferability of Calibrated Hydrological 
Model Parameters: A Case Study of Gin Catchment, 

Sri Lanka 
T.N. Wickramaarachchi and S.S.D.S. Gunasekara 

Abstract: Lack of observed data for model calibration hinders the application of hydrological 
models in many poorly-gauged catchments, particularly in the humid tropical region. Despite much 
less attention given, it is vital to assess transferability of calibrated parameters in order to apply 
hydrological models in such catchments to assist their water resources planning and management 
activities. Thus, this study investigated temporal transferability of a lumped conceptual hydrological 
model’s (MIKE 11 NAM) calibrated model parameters for rainfall-runoff simulations in two different 
time periods beyond its calibration period. Study area was selected as Gin catchment located in the 
humid tropical region. MIKE 11 NAM model was calibrated for the period 1995-1998 [Nash Sutcliffe 
coefficient (NSE) = 0.73, percent bias (PBIAS) = 3.9%, ratio of the root mean square error to the 
standard deviation of measured data (RSR) = 0.52] and validated for the period 1999-2002 (NSE=0.66, 
PBIAS = 8.7%, RSR = 0.59) for the Gin catchment. The temporal transferability of the calibrated model 
parameters was tested using two scenarios which formulated based on the temporal lag between the 
calibration period and the transfer period: scenario A having a 4-year time lag and scenario B having a 
8-year time lag. Scenario A which evaluated the model performance using 2003-2006 streamflow data
indicated only a marginal loss in the model performance in comparison to the calibration. It showed
an overall ‘good’ performance (NSE=0.64, PBIAS = 8.6%, RSR = 0.59) including promising capability
to reproduce the peak flows (<10th percentile) with Pearson’s correlation coefficient of 0.6. However,
scenario B which evaluated the model performance using 2007-2010 streamflow data indicated
‘unsatisfactory’ model performance (NSE=0.42, PBIAS = 13.6%, RSR = 0.76). Therefore, this study
suggests that the calibrated parameters of MIKE 11 NAM model can be temporally transferred within
a catchment with a 4-year time lag from the calibration period implying the applicability of this
modelling framework for rainfall-runoff simulations especially in the catchments where streamflow
data is sparse.
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1. Introduction

Streamflow simulation is a widely used 
technology in the field of hydrology which 
assists water managers to plan, design, and 
manage water resource systems effectively. A 
wide range of mathematical models has been 
setup for rainfall-runoff simulation following 
the advent of the computer revolution in 1960s 
which elevated the field of hydrologic 
modelling to a new level [1]. Rainfall-runoff 
simulation models need a range of catchment 
specific parameters and hydro-meteorological 
input data including observed streamflow data. 
However, in most instances, the observed 
streamflow data are either unavailable or 
inadequate in quantity and quality in the 
context of spatial, temporal and spatio-
temporal scales. Catchments with these types of 
unavailability or inadequacy of data can be 

considered as un-gauged catchments and 
according to Sivapalan et al. [2], most of the 
catchments around the world are either un-
gauged or poorly-gauged. 

Researchers showed interest to study runoff 
simulations in the un-gauged or poorly-gauged 
catchments by transferring the model 
parameters spatially, temporally or spatio-
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temporally; Blöschl and Sivapalan [3] identified 
the process of transferring model parameters to 
an un-gauged catchment from a hydrologically 
similar catchment using regionalization; as 
revealed by Merz et al. [4], in the concept of 
hydrological similarity based on the spatial 
proximity and catchment attributes, the 
catchment conditions varied smoothly across 
space and the catchments located close by 
behaved approximately similarly during a 
particular hydrologic event; Makungo et al. [5] 
showed reasonable results for runoff simulation 
in the un-gauged Nzhelele River catchment 
using MIKE 11 NAM and Australian Water 
Balance Model (AWBM) by transferring the 
parameters calibrated for the neighbouring 
Tshiluvhadi catchment in South Africa using 
the regionalization of parameters based on the 
spatial proximity and similarity of catchment 
attributes; Odiyo et al. [6] also followed a 
regionalization approach based on the spatial 
proximity using the lumped conceptual MIKE 
11 NAM model to estimate the flow 
contributions to Luvuvhu River from 
Latonyanda River, downstream of Albasini 
Dam in South Africa; Apaydin et al. [7] used 
SLURP model to test the temporal 
transferability of model parameters for the 
Aksu basin in the Black Sea region in Turkey; 
Patil and Stieglitz [8] compared three parameter 
transfer schemes for two hundred and ninety 
four catchments in United States of America 
using EXP-HYDRO model which is a lumped 
model and identified the temporal transfer of 
parameters as the best scheme in comparison to 
the spatial and spatio-temporal schemes.  
 
However, runoff simulation in un-gauged 
catchments is a relatively new area of study in 
Sri Lanka. In Sri Lanka, only a handful of 
studies has been conducted on runoff 
estimations in un-gauged or poorly-gauged 
catchments; Rajendran et al. [9] used watershed 
area ratio technique when simulating the un-
gauged Hakwatuna Oya catchment in upper 
Deduru Oya basin by using HEC-HMS model 
and WEAP model calibrated and validated for 
Tittawella catchment. Jayasinghe and Rajapakse 
[10] used a spreadsheet based rainfall-runoff 
model to simulate the runoff in Erewwala 
catchment in Bolgoda River basin using the 
parameters which were calibrated for Kalu 
Ganga basin. Lakmali [11] compared three 
parameter transfer schemes, temporal, spatial 
and spatiotemporal, for Kalu River basin in Sri 
Lanka using a two-parameter monthly water 
balance model. Thus, research gaps of the 
existing studies for Sri Lanka demand 

application of a conceptual model to test the 
parameter transferability. Moreover, limited 
number of studies used the conceptual models 
to test the transferability of the model 
parameters in the temporal context in 
catchments located in humid tropical regions 
and MIKE 11 NAM lumped conceptual model 
has not been tested for the parameter 
transferability for Sri Lankan catchments. 
Therefore, this study focused on assessing the 
temporal parameter transferability of a lumped 
conceptual model, MIKE 11 NAM, by applying 
it to the Gin catchment, Sri Lanka. Gin River is 
the main source of drinking water supply to the 
Galle city, the capital city of Southern province 
of Sri Lanka. One of the major drinking water 
extraction points in the Gin River is located at 
Baddegama and daily streamflow data at 
Baddegama discharge gauging station was 
used for calibration of the model parameters in 
this study. Thus, the calibrated parameter 
values could be used for setting up of 
hydrological models to carry out future water 
resources assessment activities in the 
catchment. 
 
2. Materials and Methods 
 
2.1 Study Area and Data 
This study focused on the upstream of the Gin 
River’s catchment, lying approximately 
between 80°08" E to 80°40" E and 6°03" N to 
6°26" N. The Gin catchment has a total drainage 
area of about 930 km2 and the overall difference 
in the elevation is more than 1300 m. The Gin 
catchment is characterized by strong 
monsoonal rainy seasons, south west monsoon 
(between May and September) and north east 
monsoon (between November and February) 
followed by inter-monsoon rains during the 
remaining months of the year. Rainfall ranges 
from 2500 mm/year in the flood plains to over 
3500 mm/year in the mountainous regions. 
Average temperature in the catchment varies 
between 24°C and 32°C with high humidity 
levels. 
 
The catchment can be classified into three 
distinct landscape types, i.e., the lowlands, the 
midlands and the uplands. Soils in the 
catchment comprise Red Yellow Podzolic soil 
covering most of the uplands and midlands 
while alluvial, bog and half-bog soil types along 
streams and in the lowlands [12]. The 
catchment of the Gin River is rather a natural 
catchment in Sri Lanka having a natural   
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rainforest and wildlife reserve covering 
considerable area in the uplands and the 
midlands. The lowlands and midlands are 
characterized by rain-fed paddy and other 
export-oriented crop cultivations, and 
settlements [13]. The present study addressed 
the catchment area which is upstream of the 
Baddegama discharge gauging station 
(6°11'23" N, 80°11'53" E) having an area of    
780 km2. Figure 1 illustrates the location of the 
Gin catchment, stream network and 
Baddegama discharge gauging station. 
 

 
 
Figure 1 - Location of the Gin Catchment, 
Stream Network and Baddegama Discharge 
Gauging Station  
 
Daily streamflow data at Baddegama 
discharge gauging station (1995-2010) were 
obtained from the Department of Irrigation, Sri 
Lanka. Daily evaporation data at Deniyaya 
and daily rainfall data at Anninkanda, 
Kudawa, Hiniduma, Baddegama and 
Labuduwa were obtained from the 
Department of Meteorology, Sri Lanka, 
covering the period 1995-2010. The Thiessen 
polygon method was used to calculate the 
mean areal rainfall. The Shuttle Radar 
Topographic Mission (SRTM) Digital Elevation 
Model (DEM) with 3 arc second resolution was 
used to delineate the Gin catchment [14]. Year 
1999 land use map of the Gin catchment 
having 1:10,000 scale was collected from the 
Survey Department, Sri Lanka.  
 
2.2 Hydrological Model  
This study applied the Nedbør-Afstrømings-
Model (NAM), a lumped conceptual module 
built in MIKE 11, to simulate rainfall-runoff in 
a continuous mode. The model has been 
successfully applied by previous researchers 
for hydrological investigations in many 
catchments including the catchments in Sri 
Lanka: rainfall-runoff simulations [15], [16], 
[17], model performance evaluation studies 

[18], land use change impact assessments on 
flood formations [19], and runoff simulations 
in un-gauged catchments [5], [6].  
 
A lumped, conceptual rainfall-runoff model, 
MIKE 11 NAM, considers the catchment as a 
single entity. The model structure of the NAM 
is shown in Figure 2 [20]. The land phase of the 
hydrological cycle is imitated there. Different 
physical elements of the catchment that 
represent four mutually interrelated storages, 
namely, surface storage, snow storage, 
groundwater storage, and root zone storage, 
are used in the NAM rainfall-runoff process. 
Catchment runoff and the temporal variation 
of the soil moisture content, 
evapotranspiration, groundwater recharge, 
and groundwater levels are produced by the 
NAM and the catchment runoff is split 
conceptually into three components: overland 
flow, interflow and baseflow [21]. 
 

 
 
Figure 2 - Model Structure of the NAM [20]  
 
In Figure 2, P is precipitation, Ep is potential 
evapotranspiration, Ea is actual 
evapotranspiration, Umax is maximum water 
content in surface storage, Lmax is maximum 
water content in root zone storage, PN is excess 
water, L is moisture content in the root zone 
storage, U is moisture content in surface 
storage, CK1 and CK2 are time constants for 
routing overland flow, G is infiltrating water, 
QIF is interflow, QOF is overland flow, BF is 
baseflow and CKBF is time constant for routing 
the base flow. 
 



ENGINEER 14ENGINEER 4  

2.3 Performance Criteria for the 
Hydrological Model   

Graphical techniques [22] and statistical 
measures including Nash-Sutcliffe efficiency 
(NSE) [Eq.(1)] [23], percent bias (PBIAS) 
([Eq.(2)] [24] and root mean square error 
(RMSE) - observations standard deviation ratio 
(RSR) [25] were selected according to Moriasi 
et al. [26] for evaluation of model performance 
during calibration, validation and scenario 
evaluation. RSR was calculated as the ratio of 
RMSE and standard deviation of measured 
data, as shown in Eq.(3). The NSE ranges from 
–∞ to 1, determining the relative magnitude of 
the residual variance compared to the 
measured variance. According to Dobler et al. 
[27], it is particularly suitable for measuring 
the performance of high flows. A PBIAS of 0 
represents a perfect fit. The PBIAS is a measure 
for the total volume differences between 
measured and observed data; a positive value 
indicates model underestimation, and negative 
values indicate model overestimation. RSR 
standardizes RMSE using the observations 
standard deviation, and it combines both an 
error index and the additional information 
recommended by Legates and McCabe [22]. 
RSR varies from the optimal value of zero 
which indicates perfect model simulation, to a 
large positive value. Lower RSR and lower 
RMSE indicate better model performance [26]. 
 

𝑁𝑁𝑆𝑆𝐸𝐸 −   𝑌𝑌𝑖𝑖𝑜𝑜𝑏𝑏𝑠𝑠 −𝑌𝑌𝑖𝑖𝑠𝑠𝑖𝑖𝑚𝑚𝑛𝑛
𝑖𝑖

 𝑌𝑌𝑖𝑖𝑜𝑜𝑏𝑏𝑠𝑠 −𝑌𝑌𝑖𝑖𝑚𝑚𝑒𝑒𝑎𝑎𝑛𝑛𝑛𝑛
𝑖𝑖

                                (1) 

  
𝑃𝑃𝐵𝐵𝐼𝐼𝐴𝐴𝑆𝑆    𝑌𝑌𝑖𝑖𝑜𝑜𝑏𝑏𝑠𝑠 −𝑌𝑌𝑖𝑖𝑠𝑠𝑖𝑖𝑚𝑚  𝑛𝑛

𝑖𝑖
 𝑌𝑌𝑖𝑖𝑜𝑜𝑏𝑏𝑠𝑠𝑛𝑛
𝑖𝑖

                               (2) 

 

𝑅𝑅𝑆𝑆𝑅𝑅 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸
𝑆𝑆𝑇𝑇𝐷𝐷𝐸𝐸𝑉𝑉𝑜𝑜𝑏𝑏𝑠𝑠

    𝑌𝑌𝑖𝑖𝑜𝑜𝑏𝑏𝑠𝑠 −𝑌𝑌𝑖𝑖𝑠𝑠𝑖𝑖𝑚𝑚  𝑛𝑛
𝑖𝑖  

    𝑌𝑌𝑖𝑖𝑜𝑜𝑏𝑏𝑠𝑠 −𝑌𝑌𝑖𝑖𝑚𝑚𝑒𝑒𝑎𝑎𝑛𝑛  𝑛𝑛
𝑖𝑖  

              (3) 

 

In the above equations, Yiobs, Yisim and Yimean are 
ith observed streamflow, ith simulated 
streamflow and mean of the observed 
streamflow, respectively, and n is the total 
number of streamflow observations. 
 
2.4 Model Calibration, Validation and 

Evaluation Processes  
In hydrologic modelling studies, proper model 
calibration is important to reduce uncertainty 
in model simulations. Ideal model calibration 
involves use of data that includes wet, 
average, and dry years [28] and use of multiple 
evaluation techniques [20], [22]. In this study, 
the parameters related to surface, root zone 
and groundwater storages were calibrated 
against time series of streamflow observations. 
The typical value range for each calibration 
parameter is shown in Table 1. The calibrated 
model parameters were obtained by two 
approaches: the automatic parameter 
estimation approach, Shuffled Complex 
Evolution (SCE) algorithm [29] and the manual 
approach, trial-and-error procedure.  Auto 
calibration was set under the two objective 
functions: overall volume error [F1(∅)] [Eq.(4)] 
and overall root mean square error [F2(∅)] [18] 
[Eq.(5)]. 
 
The NAM model was calibrated and validated 
by continuous runoff simulations. Split 
sampling technique was used for the model 
calibration and validation. The periods 1995-
1998 and 1999-2002 were used for the model 
calibration and validation, respectively, while 
the periods 2003-2006 and 2007-2010 were 
used for the model evaluation under scenario 
A and scenario B, respectively. 
 
 
 
 
 

 
Table 1 - Parameter Range Used for Model Calibration 

 

Parameter Lower bound Upper bound 

Maximum water content in surface storage Umax (mm) 10 20 
Maximum water content in root zone storage Lmax (mm) 100 300 
Overland flow runoff coefficient CQOF 0 1.0 
Time constant for routing interflow CKIF (hour) 200 1000 
Time constant for routing overland flow CK1,2 (hour) 10 50 
Rootzone threshold value for overland flow TOF 0 0.99 
Rootzone threshold value for interflow TIF 0 0.99 
Root zone threshold vale for Ground water recharge TG 0 0.99 
Time constant for routing recharge CKBF (hour) 1000 4000 
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𝐹𝐹  ∅  𝑛𝑛   𝑌𝑌𝑖𝑖𝑜𝑜𝑏𝑏𝑠𝑠 − 𝑌𝑌𝑖𝑖𝑠𝑠𝑖𝑖𝑚𝑚  ∅  𝑛𝑛
𝑖𝑖                          (4) 
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where, Yiobs is ith observed streamflow, Yisim is ith 
simulated streamflow, ∅ is the set of model 
parameters to be calibrated, and n is the 
number of time steps in the calibration period. 
 
2.5 Temporal Transfer of Model 

Parameters 
The MIKE 11 NAM model was tested for the 
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parameters for two different time periods 
using two scenarios: scenario A having a 4-
year time lag and scenario B having a 8-year 
time lag from the calibration period, 
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scenario B which evaluated the model 
performance using 2007-2010 flow data. In 
both scenarios, it was assumed that no 
significant changes occur among 
environmental variables between the 
calibration period and the transfer periods. 
 
3. Results and Discussion 
 
3.1 Model Calibration and Validation 

Results 
The optimum values of the model parameters 
obtained during the calibration procedure are 
outlined in Table 2. The parameter values fall 
within the ranges recommended by DHI [30]. 
Overall, the MIKE 11 NAM model simulated 

the timing and the magnitude of streamflow 
reasonably well. Visual inspection indicates 
that the simulated streamflow values match 
the observations reasonably well during the 
calibration [Figure 3(a)], despite a slight 
underestimation of some peaks during the 
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Differences between the observed and 
simulated streamflow are possible due to the 
limited number of rainfall gauging stations 
used in the study which formed comparatively 
bigger Thiessen polygons particularly in the 
middle area of the catchment.  
 
As reflected by the statistical measures used to 
evaluate the model performance (Table 3), 
MIKE 11 NAM shows a good agreement 
between the observed and simulated 
streamflow values for both calibration and 
validation. The NSE for both calibration and 
validation runs are 0.73 and 0.66, respectively 
(Table 3). The NSE values fall within the 
acceptable range (NSE > 0.50) as 
recommended by Moriasi et al. [26]. The 
computed PBIAS for both calibration and 
verification runs are 3.9% and 8.7%, 
respectively. As recommended by Moriasi et 
al. [26], the PBIAS values obtained in the 
calibration and verification runs fall within the 
acceptable range of ±25%. The RSR values for 
both the runs fall within the acceptable range 

 
Table 2 - Calibrated Model Parameters 

 

Parameter Optimum value 

Maximum water content in surface storage Umax (mm) 11 

Maximum water content in root zone storage Lmax (mm) 105 

Overland flow runoff coefficient CQOF 0.73 

Time constant for routing interflow CKIF (hour) 215 

Time constant for routing overland flow CK1,2 (hour) 49.5 

Rootzone threshold value for overland flow TOF 0.15 

Rootzone threshold value for interflow TIF 0.0156 

Root zone threshold vale for Ground water recharge TG 0.07 

Time constant for routing recharge CKBF (hour) 1010 
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given in Moriasi et al. [26] (RSR < 0.70). The 
overall performance of the MIKE 11 NAM in 
this study compared to earlier studies carried 
out in different regions indicates that the 
findings are reasonable [5], [6], [18], [31]. Since 
the optimized parameter values and 
performance measures fall within the 
acceptable ranges, MIKE 11 NAM model was 
able to reasonably simulate the rainfall-runoff 
generation process in the Gin catchment. 
 
3.2 Model Performance based on 

Temporal Transfer Scenarios 
In this study, the calibrated model was applied 
for runoff simulations at two other time 
periods with an implicit assumption that the 
calibrated model parameters were temporally 
stable. The performance of the MIKE 11 NAM 
model across the two parameter transfer 
schemes, scenario A (4-year time lag from the 
calibration period) and scenario B (8-year time 
lag from the calibration period), were 
compared. As shown in Table 3, the overall 
model performance is better for scenario A 
(NSE = 0.64; decline of 12.3% compared to 
calibration, PBIAS = 8.6%; increase of 115% 
compared to calibration, RSR =0.59; increase of 
15.4% compared to calibration) in comparison  
 

to scenario B (NSE = 0.42; decline of 42.5% 
compared to calibration, PBIAS = 13.6%; 
increase of 241% compared to calibration, RSR 
=0.76; increase of 46.1% compared to 
calibration). The observed and simulated 
hydrographs for scenario A and scenario B are 
given in Figure 5 and Figure 6, respectively.  
 
Statistical indices which evaluated the model 
performance (Table 3) and the   observed   and 
simulated hydrographs (Figure 5) suggest that 
the model performance has only very slight 
decrease for scenario ‘A’ in comparison to the 
model calibration. The model has 
underestimated some of the peak flows, 
however, it has reasonably simulated most of 
the peak flows and low flows.  
 
The model performance has significantly 
decreased for scenario B which had 8-year 
time lag from the calibration period. Most of 
the peak flows and low flows have been 
underestimated (Figure 6). All the model 
performance indices (Table 3) show a 
significant decline in comparison to the model 
calibration. 
 
           

  
 
Figure 3 – Observed and Simulated Hydrographs: (a) Calibration (1995-1998); (b) Validation (1999-
2002) 
 
 

  
 
Figure 4 - Observed and Simulated Cumulative Daily Streamflow Values: (a) Calibration (1995-
1998); (b) Validation (1999-2002) 
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Scatter plots of the observed versus simulated 
streamflow values with the 1:1 line for 
scenario A and scenario B are shown in Figure 
7(a) and Figure 7(b), respectively. For scenario 
A, the data points shown in Figure 7(a) are 
closely scattered along both sides of the 1:1 
line showing less systematic bias while the 
observed and simulated values in scenario B 
show somewhat weak relationship with data 
points sparsely scattered along the 1:1 line 
with significant positive bias [Figure 7(b)]. 
Considering all the criteria, the model 
performance can be considered as ‘good’ for 
scenario A while scenario B falls into 
‘unsatisfactory’ category according to Moriasi 
et al. [26]. 
 
In line with the findings of this study, Patil and 
Stieglitz [8] demonstrated the overall superior 
performance of the temporal parameter 
transfer schemes over the spatial transfer 
scheme and observed a depletion of lumped 
hydrological model’s performance (EXP-
HYDRO model) when the temporal gap 

between calibration periods was increased to 8 
years. Rainfall-runoff simulation conducted by 
Apaydin et al. [7] using a semi-distributed 
model (SLURP model) in Aksu basin in Turkey 
also showed a significant decrease in the 
model performance when the parameters were 
transferred with a time lag of ten years. 
Moreover, as concluded by Van der Linden 
and Woo [32], hydrological model parameters 
must be recalibrated at regular intervals, i.e., 5-
10 years, since the use of calibrated parameters 
for extended periods without modification 
produced misleading evaluations. As revealed 
in the present study, the decrease in the model 
performance with higher temporal lag from 
the calibration period might be attributed to 
the divergent physical characteristics of the 
catchment which agreed with the findings by 
Van der Linden and Woo [32]. Some of the 
MIKE 11 NAM calibrated parameter values 
were related to physiographic characteristics 
of the catchment [21], particularly to the 
catchment land use, which might have 
changed across the two periods. 

 
 

Table 3 - Model Performance Evaluation  
 NSE PBIAS (%) RSR 
Calibration (1995-1998) 0.73 3.9 0.52 
Validation (1999-2002) 0.66 8.7 0.59 
Scenario A (4-year time lag 
from the calibration period) 

0.64 8.6 0.59 

Scenario B (8-year time lag 
from the calibration period) 

0.42 13.6 0.76 

 
 
 
 
 

   
 
 
 
 
 

Figure 5 - Observed and Simulated 
Hydrographs for Scenario A 

Figure 6 - Observed and Simulated 
Hydrographs for Scenario B 



ENGINEER 18ENGINEER 8  

    
 

Figure 7 - Scatter Plot of Observed versus Simulated Streamflow: (a) Scenario A; (b) Scenario B 
 
3.3 Model Suitability Analysis in Peak 

and Low Flow Regimes for Scenario A 
In order to assess the model performance for 
scenario A in peak flow and low flow regimes, 
flow duration curves were developed. 
According to EPA [33], peak flow was defined 
as the values falling below the 10th percentile 
in the distribution of streamflow values while 
low flow was defined as the streamflow values 
falling above the 90th percentile. Flow duration 
curves of the observed and simulated 
streamflow for scenario A reveal some 
inconsistency in curve matching in the peak 
flow regime and in the low flow regime 
(Figure 8). Simulations reasonably captured 
the peak flow in comparison to the low flow. 
According to Smakhtin [34], it is a challenging 
task in hydrology to simulate the low flows 
which take place in dry seasons as a seasonal 
phenomenon due to the complexity of 
groundwater processes. 
 
In assessing the goodness-of-fit between the 
observed and the simulated flows in 
scenario A, Pearson’s correlation coefficient (r) 
which describes the degree of collinearity 
between the simulated and the observed data 
was used [26]. The correlation coefficient, r, 
which ranges from -1 to 1, is shown in Eq.(6). 
 
𝑟𝑟   𝑋𝑋𝑖𝑖−𝑋𝑋𝑖𝑖

𝑚𝑚𝑒𝑒𝑎𝑎𝑛𝑛  𝑛𝑛
𝑖𝑖  𝑌𝑌𝑖𝑖−𝑌𝑌𝑖𝑖

𝑚𝑚𝑒𝑒𝑎𝑎𝑛𝑛  

    𝑋𝑋𝑖𝑖−𝑋𝑋𝑖𝑖
𝑚𝑚𝑒𝑒𝑎𝑎𝑛𝑛  𝑛𝑛

𝑖𝑖    𝑌𝑌𝑖𝑖−𝑌𝑌𝑖𝑖
𝑚𝑚𝑒𝑒𝑎𝑎𝑛𝑛  𝑛𝑛

𝑖𝑖  
                (6) 

 
where, Xi, Yi, Ximean and Yimean are ith observed 
streamflow, ith simulated streamflow, mean of 
the observed streamflow and mean of the 
simulated streamflow, respectively, and n is 
the total number of streamflow observations. 
 
In scenario A, simulated flow correlated well 
with the observed flow in the peak flow region 
(r > 0.6) in comparison to the low flow region 
(r < 0.3). Thus, the model performance in the 
peak flow region can be judged as 

‘satisfactory’ [35]. Therefore, it is evident that 
the MIKE 11 NAM model can adequately 
reproduce the peak flow components of runoff 
hydrograph using the transferred model 
parameters with 4-year temporal lag. 
 

 
 
Figure 8 - Flow Duration Curves of Observed 
and Simulated Streamflow for Scenario A 
 
4. Conclusions 
 
This study demonstrated that the performance 
of a hydrological model can vary in the same 
catchment when the calibrated model is 
applied for rainfall-runoff simulations beyond 
the calibration period without modification to 
the calibrated parameters. The extent of 
variation of the model performance, however, 
differed with the temporal gap between the 
calibration period and the transfer period. 
With a temporal gap of 4 years, performance of 
the MIKE 11 NAM model decreased slightly 
but the model was able to adequately simulate 
the rainfall-runoff generation process in the 
Gin catchment by reliably reproducing the 
timing and shape of rising and recession 
curves of the hydrographs. With the same 
temporal gap, the model performed well in the 
peak flow region (<10th percentile) in 
comparison to the low flow region (>90th 
percentile) highlighting the successful peak 
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runoff simulations by the MIKE 11 NAM using 
the transferred model parameters. When the 
temporal gap was increased to 8 years, the 
model performance drastically reduced. 
Therefore, it is recommended to update the 
calibrated model parameters whenever they 
are used for runoff simulations in extended 
periods in the catchments where 
physiographic catchment characteristics are 
supposed to change. The findings of the 
present study have vital implication for 
rainfall-runoff simulations in catchments 
where data availability is a critical issue. The 
modelling framework presented in this study 
will pave the way for future researchers to 
carry out hydrological modelling based 
investigations in the catchments where 
streamflow data is sparse. 
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