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Estimation Criteria for Static Rock Mass
Deformability Modulus for Rock-Socket Design in
Metamorphic Rock Masses

M.N.C. Samarawickrama, U.G.A. Puswewala, H.S. Thilakasiri and
K.M.L.A. Udamulla

Abstract: This study investigates the most appropriate empirical criteria to estimate the static
rock mass deformability modulus (E,) in the design of rock-sockets in cast-in-situ bored pile
construction. The in-situ E,, values are initially estimated through back analysis of static pile load test
data. Secondly, the rock mass deformability estimated from back analysis (E,;) are tested statistically
against selected established empirical equations to determine whether the latter are appropriate for
use in metamorphic rock terrain of Sri Lanka. It is found that the existing empirical criterion based on
the square root of intact unconfined compressive strength (o.) derived from back analysis of pile load
test results is appropriate for weak-poor rock masses. For strong-poor rocks, it is recommended to
employ the equation based on o, and in general the two equations generate lower and upper bound
solutions. The equation based on intact deformability modulus (E;) performs well in strong-excellent
quality rock masses, while the equations based on E; and rock quality designation (RQD) are found to
be appropriate for weak-fair to excellent rock masses. Finally, a new set of equations appropriate for
different rock mass types have been proposed through regression analysis along with appropriate
design measures to be adopted.

Keywords: Rock mass deformability modulus, Intact deformability modulus, In-situ testing,
Empirical method, Rock socket
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theoretical settlement estimations made by
adopting the experimentally evaluated E,
results.

It is reported that, the experimentally
evaluated E,, values themselves (both intact
and in-situ) show considerable discrepancies
due to dependency on the test method [3] and
the geological anisotropy [4].

Under these circumstances, the commonly
adopted practice in the estimation of
E,, among the practitioners in the piling
industry is through the established empirical
equations, though it is found to be
conservative. Conversely, most of the
empirical equations adopted in the rock socket
designs are developed either from data bases
established for comparatively weak rock
masses or results obtained from different
construction purposes such as tunnels, mines
and dams.

Hence this study has been carried out to
identify the most appropriate criteria in the
estimation of E,, that suit stronger crystalline
metamorphic rock mass conditions such as
those found in Sri Lanka. Common empirical
equations employed in the rock socket designs
and their adoptability are initially investigated.

Secondly the investigated empirical equations
are tested to determine whether they are
appropriate for use in design of rock sockets in
crystalline metamorphic rock. Finally, a new
set of empirical equations with better

prediction capability are developed to estimate
E,, for the design of rock sockets.

2. Estimation of E,, using Empirical

Methods and Its use for Rock-
Socket Design

2.1 Common Empirical Estimation Criteria
for E,, in Rock Socket Design

Equations presented in Table 1 are commonly
adopted due to their simplicity and data
availability —in  rock  socket  designs.
Nevertheless, apart from the equations
presented in Table 1, there are equations which
relate E,, with degree of weathering (WD),
rock mass classification systems, Rock Mass
Rating (RMR), Rock Mass Quality (Q),
Geological Strength Index (GSI) and Rock
Mass Index (RMi) and the degree of
disturbance due to excavation (D) or as
combinations of aforementioned parameters
coupled with intact strength and deformability
parameters. The presently available borehole
log data, which is the main source of
information, lack certain essential data needed
for the assessment of the appropriateness of
such equations for the purpose of this work.
Hence empirical equations which depend only
on most commonly available data, such as
Rock Quality Designation (RQD) and the
laboratory determined intact unconfined
compressive  strength  (o,) or  rock
deformability modulus (E;), have been tested
to determine whether they are appropriate for
use in rock socket design.

Table 1 - Commonly Employed Empirical Equations in the Estimation of E,, for Rock Socket

Design
Empirical Equation Equation Author/s
Number
E,, = 0.5E; ... (1) Palmstrom and Singh [5]
En = 215,/0, (MPa) ... (2) Rowe and Armitage [6]
logo Emn/0, = 2.73 — 0.4910g,, 0. /P, ... (3) Prakoso [7]
E, = 0.20, (GPa) ... (4) Palmstrom and Singh [5]
E,/E; = 0.0231 RQD — 1.32 ... (5) Coon and Merritt [8]
E,./E; = RQD/350; RQD<70 .. (6a N .
E,,/E; = 0.2 + [(RQD — 70)/37.5]; RQD>70 E6b; Bieniawski [9]
E,./E; =], related to RQD .. (7) Kulhawy and Goodman [10]
RQD > 57%; Equation (5 .. (8a
RQD < 57%; Ei/Ei = (51)5 . ESb; Gardner [11]
E,,/E; = 0.2 + 10(0:0186RCD=1:91) ] swer bound .. (9a) Zhang and Einstein [3]
E,,/E; = 1.8 x 10(0:0186RQD-191)_[Jpper bound ... (9b)
E,,/E; = 10(0:0186RQD-1:91) _\oqn ... (9)
where, E,,- rock mass deformability modulus, E;- intact deformability modulus, o,- intact unconfined

compressive strength, RQD- rock quality designation, ;/- average joint spacing (mass factor)
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Equation (1) has been based on the
consideration of the scale effects of E; on E,, in
rock blocks of 2 m to 4 m equivalent specimen
diameter and considering the scale-based
relationship  between  the  unconfined
compressive strength (o, ) of test samples and
rock blocks (g, ). It is found to perform well
in massive rocks with few or no joints [5].
Equation (4) is an extension of Equation (1),
deduced for rocks with modulus ratio (MR)
(the ratio between the intact deformability
modulus and the unconfined compressive
strength) of 400 [5]. Rowe and Armitage [6]
have proposed Equation (2), based on the back
analysis of a large number of load test results
on piles socketed into weak rock [6]. They
have proposed to apply a partial factor of 0.7
in pile socket design when adopting Equation
(2) to accommodate the factor proposed by
other literature related to rock socket design
under serviceability limit state. Equation (3) is
an advanced version of Equation (2) and
Prakoso [7] has used the same data base of
Rowe and Armitage [6], which mainly
included pile load test data pertaining to weak
rock masses such as mudstone, shale and
sandstone. The basis for Equation (5) is
through a data base of in-situ E,, obtained
from relatively less fractured (RQD> 60%)
rock masses underlying dam sites of mainly
granite gneiss and gneiss formations, as well
as limestone and sandstone in some locations.
Actually, Equation (5) is only applicable to
rock masses with RQD > 64%, else the
elasticity modulus ratio (E,,/E;) (which in

some instances is defined as modulus
reduction  factor) becomes negative.
Nevertheless, Coon and  Merritt [8]

recommend the equation to be used in small
projects, where conducting in-situ tests is
uneconomical. Moreover, the equation has
been proven to perform well in the evaluation
of the safety of existing rock founded concrete
dam foundations against flood-overtopping
[12]. Coon and Merritt [8] have proposed the
modulus reduction factors in Table 2 to be
adopted for different ranges of RQD. Equations
(6a) and (6b) are based on the plot developed
by Bieniawski [9] on a data base of in-situ E,

Table 2 - Modulus Reduction Factors for
Different RQD Levels [8]

RQD (%) En/E;
00-25 <0.20
25-50 <0.20
50-75 0.20-0.50
75-90 0.50-0.80

90-100 0.80-1.00

corresponding to both weaker rock formations
(siltstone, mudstone, sandstone, greywacke
and shale) and stronger rock formations
(massive granite gneiss, phyllite and dolerite).
Based on the plot developed by Bieniawski [9],
subsequent literature has presented and
recommended these two equations for
different rock applications and also for rock
socket design. By considering the theoretical
concepts that jointed rock can be modelled as
an equivalent elastic continuum and that the
deformability of a jointed rock mass is the
result of the stiffness of the rock itself and the
stiffness of the joints, Kulhawy and Goodman
[10] had proposed Equation (7). Gardner [11]
improved Equation (5) suggesting the
formE,, = agp E;  where a; represents  the
coefficients given in Equation (5) to form
Equation (8a) when RQD > 57% and Equation
(8b) when RQD < 57%, where it becomes 0.15.
It is noteworthy to mention that these two
equations have two main Ilimitations as
suggested by Zhang and Einstein [3]. Firstly, it
does not sufficiently cover the case of RQD <
60%, where an arbitrary modulus reduction
factor value is proposed. Secondly when
RQD = 100% it results in E,, = E;, which is
unrealistic and thus unsafe in design practice.
This is because the case of RQD = 100% does
not always imply that the rock is intact as there
may be discontinuities in rock masses and thus
the actual E,,, may be less than E; even though
RQD is 100% [3]. In order to mitigate the
deficiencies identified in the various previous
relationships on E,,,/E; and RQD, Zhang and
Einstein [3] have incorporated more data
extracted from published literature into their
data base with a greater range of RQD (0 <
RQD <100%) and rock types (mudstone,
siltstone, sandstone, shale, dolerite, granite,
limestone, greywacke, gneiss, and granite
gneiss). With the new data base, they have
been able to develop Equation (9¢) with two
other equations which demarcate the lower
bound Equation (9a) and wupper bound
Equation (9b) solutions for E,,/E; against RQD
relationships. Unlike in previous instances,
their relationships are found to be nonlinear,
but with a better coefficient of regression.

2.2 Appropriate Criteria for Rock Socket
Design

Pells and Turner [1] have pioneered the
dominant use of elastic parameters of rock in
the design of rock sockets by producing
settlement estimation charts for different
socket types and geometries, in which
E,, plays an integral role. They proposed
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elastic solutions for the settlement of shear
sockets, flexible or rigid type end-bearing
sockets (considering a loaded circular area at
the base of a shaft), and for complete sockets
(which offer resistance by skin friction over the
socket wall as well as end bearing at the base
of shaft). They further suggest modified
solutions for recessed shafts due to
embedment, while reporting that their
solutions for the settlement of end-bearing
bases better represent the case of flexible
footings (hard rock) compared to that of rigid
footings (soft rock). Moreover, Pells and
Turner [1] have suggested adopting the
settlement reduction factors yielded by
solutions for rigid footings when E, ;. / E,;,>50
and otherwise through solutions proposed for
flexible footings. Pells and Turner [1] also
recommend a criterion to estimate E;,, through
back analysis of pile load tests to verify the
accuracy of the design solution. Coupling the
field and laboratory experimental results with
the elastic solution of Pells and Turner [1],
Williams and Pells [13] introduced a side
resistance reduction factor for rock sockets for
the estimation of ultimate rock socket skin
friction for a particular rock zone. The side
resistance reduction factor (B) represents the
reduction of lateral confinement which is
experimentally found to be proportionately
related to] (mass factor) =E,,/E;, given in
Equation (7) and has also been directly related
to the joint spacing and hence RQ@D [10].
Williams and Pells [13] demonstrated that in-
situ E,,, can be estimated through back analysis
of field load test results on piles to an accuracy
of within 2 times (upper bound) and 0.5 times
(lower bound) of the E,,, estimated from in-situ
pressure-meter test results. Comprehensive
elastic solutions have been proposed by
Kulhawy and Carter [14] in the design of rock
sockets and they concluded that elastic
solutions for shear sockets are more accurate
for larger Ep;./E,, ratios (soft rocks), while
solutions for complete sockets are found to be
conservative but satisfactory for most of the
design cases. Similar elastic solutions, but
extending to displacements up to full-slip
conditions, have been proposed by Rowe and
Armitage [15], in which all the design
solutions are graphically presented in the form
of Epye/E, ratio, making the deformability
modulus an integral component. They
recommend to adopt their own empirical
Equation (2), arrived through back analysis of
pile load test results, with a partial safety
factor of 0.70 to compensate for any
uncertainties.

Similar to the estimation of E,,, a substantial
number of empirical formulae are available for
the estimation of bearing capacity in the
design of rock sockets. Though the basis for
most of the design solutions are
aforementioned elastic solutions, the time and
cost involved in obtaining the required
parameters  like  E,, have caused the
practitioners to resort to cheaper empirical
means with reasonable accuracy to obtain such
parameters. The best example is the popularly
adopted rock socket skin friction estimation
criteria proposed by Williams and Pells [13].
Though it has originated through a theoretical-
experimental background, the way it is
adopted in the design [16] involves a high
degree of empiricism. As an extended version
to Table 2 [8], O'Neill et al. [17] proposed
modulus reduction factors presented in Table
3 by considering the joint characteristics, for
the design of rock sockets.

Table 3 - Modulus Reduction Factors Based
on RQD Levels [17]

RQD (%) E, /E;
Closed Joints | Open Joints
100 1.00 0.60
70 0.70 0.10
50 0.15 0.10
20 0.05 0.05

Moreover, Load and Resistance Factor Design
for Bridge Design Specifications (LRFDBDS)
[18] proposes to adopt the least of the two
values obtained for E;, from intact core sample
test and from Equation (10), for the design of
rock sockets.

e
Em - E" [E i ]t
where,
E; - Obtained from intact core sample test, and

[EE—"‘] - Obtained from Table 3.
Lt

... (10)

When laboratory estimated E; data are not
available, Equation (11) proposed by Hoek and
Diederichs [19] can be objectively adopted.

E; = MR * o, ... (11)
where,

MR- modulus ratio, representing the ratio
between the intact deformability modulus and
the unconfined compressive strength, which is
generally found to be constant (at least in a

range) for a particular rock type and a texture
[5,19].
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In combination with Equations (7) and (11), BS
8004:1986 [20] proposes Equation (12) to
estimate E,,,.

En =] *MR * o, ... (12)

This approach has also been recommended by
Williams and Pells [13] and is abundantly used
as an indirect empirical approach in the rock
socket design [16].

3. Methodology

The following methodology was adopted in
this work, which resembles the processes
adopted in a number of similar previous
studies.

Estimation  of Estimation of E,,,
Emem from from back analysis
borehole  and of the elastic
lab test data settlements  from
pile load test data
\ 4 \ 4

Comparison of deformability modulus

obtained

!

Recommend the

most  appropriate

empirical estimation of criteria to

estimate the static rock mass

deformability modulus

Figure 1 - Conceptual Study Framework
(where, Epem- empirically evaluated rock mass
deformability = modulus; E,,;,- rock  mass
deformability modulus evaluated from back
analysis of pile load test data)

As depicted in Figure 1, the rock mass
deformability modulus (Epen)is initially
estimated using different empirical formulae
reported in Table 1.

Due to the non-availability of in-situ E,, data,
the technique of back analysis of pile load test
data, which had previously been used by
many research studies in pile foundation
designs, has been adopted to estimate the in-
situ E,, in this work. Estimation of in-situ
E,, was carried out in two stages, viz., first to
estimate the elastic settlement component of
the rock socket and then to evaluate E,,

corresponding to the estimated elastic
settlement.
The estimation of elastic settlements

corresponding to rock socket section of the pile

was carried out through the load-displacement
curve  interpretation  techniques.  The
availability of fully instrumented static load
test data in the Sri Lankan context is very rare
due to its high cost, while general static load
test data are available to some extent. Out of
such, availability of complete sets of data to
the authors was further limited. The limited
available data on instrumented load tests were
not fully adoptable for this work as most of the
rock sockets had not even reached the ultimate
elastic limit due to, either the majority of the
skin friction resistance had already been taken
through the very thick soil profile or else the
load had been taken by the lengthy rock

sockets. Therefore, only 74 numbers of
conventional static load test data were
employed with the generous courtesy of the
respective  project owners and piling
contractors.

Unlike in fully instrumented load tests,

estimation of the elastic deformations
corresponding to the rock sockets through
conventional non-instrumented static load test
data was cumbersome. Nevertheless, it was
carried out in a three-staged process. Initially,
the total elastic settlement of the pile was
estimated using the procedure described by
Thilakasiri et al. [21] as depicted in Figure 2.
This is by drawing a tangent to the initial
straight section of the load settlement curve
and obtaining the maximum settlement of the
pile corresponding to the farthest point of
tangency on the load settlement curve. In the
second stage, ultimate skin friction force

(Us) generated along the shaft by the
surrounding soils was estimated with
Equation (13) wunder the following

assumptions: (i) the vertical stress distribution
along the shaft follows the critical depth
concept [22]; and (ii) majority of the soil layers
along the pile shaft have been mobilised to
their respective ultimate skin friction levels by
the time the rock socket reached its maximum
elastic limit. In the third stage, the resultant
elastic shortening of the pile due to the
downward total applied force (P;) and the
ultimate frictional resistance acting upwards
(Us) generated by the surrounding soils were
estimated using the technique proposed by
Fleming [23] as elaborated in Figure 3 with
Equation (14). Finally, the obtained resultant
deformation was eliminated from the initially
estimated total settlement to determine the
elastic deformation corresponding to the rock
socket section of the pile. The procedure
adopted for non-instrumented load tests has
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been tested for a limited number of available where,

instrumented load tests as well, which @' - Effective angle of internal friction of soil
produced reasonably accurate results (within strata prior to the installation of a bored pile
15%) on the elastic deformation of the rock ?°- Modified effective angle of internal friction
socket as depicted in Table 4. of soil strata subsequent to the installation of a
bored pile.
P’ =0"—-3 .. (13)
Average Settlement Vs Load (P4/SA9) Load (kN)
0 2000 4000 6000
ri . . :

Average Settlement (mm)

20 L da

I —»—Average Settlement Vs Load  —e—Initial tangent ]

Figure 2 - Establishment of Initial Elastic Deformation Range from Load- Settlement Curve [21]

lPT

Friction free or
. .. Lo
low friction
KeLr
Lr
Friction load
transfer length _|_ v
Centroid of
friction transfer
________ diagram __________} ___
Mobilized base T (Pr - Us) for Pr> U,
load

Figure 3 - Simplified Method of Evaluating the Elastic Shortening of the Shaft [23]

Table 4 - Comparison of Results Obtained from Instrumented Load Test and Flemming [23]
Method

Location Instrumented Load Test Method adopted for non-instrumented
Load Test in this study
Ultimate elastic | Corresponding elastic | Ultimate elastic | Corresponding elastic
stress on rock displacement of rock stress on rock displacement of rock
socket (kPa) socket (mm) socket (kPa) socket (mm)
Colombo 1 63.38 3.10 55.01 2.76
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The elastic shortening of the pile (Agg) is
obtained through the parameters depicted in
Figure 3.

4 1
Agp= ;E[PT(LO +Lp) — LpUs(1 — Kp)]... (14)

where, Dy is the diameter of the pile shaft
and Kgis the effective length  factor
representing the ratio between the depth to the
centroid of friction transfer diagram (which is
the diagrammatic representation of the
frictional force enforced by different soil strata
along the pile shaft) from the starting point of
the friction load transfer section and the
friction load transfer length (Lg). In case of
piles of non-circular sections, equivalent
diameters can be used [23].

The theoretical estimation of elastic settlements
of the rock sockets concerned was carried out
through three different widely used rock
socket design criteria, which encompass linear
elastic deformations, viz., Pells and Turner [1],
Kulhawy and Carter [14] and Rowe and
Armitage [15] criteria, respectively, given
under Table 5. The respective elastic solutions
are given in graphical form in the respective
publications to obtain the settlement influence
factor (I,) for different socket geometries and
With the

settlements

elastic modulus ratios (E,/Ey,,).

established I,, the
evaluated for rock sockets through pile load
test data discussed earlier were replaced with
the corresponding elastic settlements (p) in
Equation (15) to obtain the back analysed

deformability modulus of rock mass (Ep,y):

elastic

B = |21,

... (15)

where, r - radius of the pile/socket, F -
effective compressive load of the pile at the top
of the rock socket, which was taken as
F=P —U,s ... (16)

In order to use above elastic settlement charts,
an initial estimate of E,, is essential. For this
purpose, the widely accepted criterion of
Equation (11) was adopted to initially estimate
the E; (since the availability of the parameter
for projects in Sri Lanka is very sparse) with
appropriate MR (Note: Findings of the authors
for metamorphic rocks in Sri Lanka yield an
average value of 412). Then, with the
corresponding Jrelated to RQD and from
Equation (7), the initial estimate of E,, was
evaluated. Moreover, isotropic condition on

E,, was assumed to prevail for rock-socket
wall (E,,) and end bearing rock (E},) and hence
charts pertaining to E,/E, =1 were only
considered in this analysis. The remaining
factors, such as Poisson’s ratio (V) of rock and
pile were assumed as 0.25 (as described in the
respective publications). As depicted in Table
5, theoretical estimations can be carried out for
both shear as well as complete socket
conditions using the first and the second
methods, while the third method facilitates
only complete socket condition. Back analysis
has been carried out for all the five design
criteria and the corresponding deformability
moduli (E,,;) have been obtained.

Table 5 - Analysis Method

Rock socket design Considered type of the

criteria socket condition

Pells and Turner [1] | Shear and Complete
sockets

Kulhawy and Carter | Shear and Complete

[14] sockets

Rowe and Armitage | Complete socket

[15]

The empirically evaluated rock mass

deformability modulus (E,,.,,) obtained using
the Equations (1) to (9c) were compared
against the deformability modulus obtained
through back analysis (E,;) to check the
appropriateness of each equation to estimate
the static rock mass deformability modulus for
rock socket designs in hard metamorphic rock
such as those existing in Sri Lanka. This is by
performing a Root Mean Square Error (RMSE)
analysis. This technique has previously been
used by a number of researchers for the same
purpose. The smaller the error generated, the
better the predictive capacity of the particular
equation. Finally, by performing linear as well
as non-linear regression analyses using the
Statistical Package for the Social Sciences
(SPSS) software, a novel set of empirical
equations are developed to obtain the E,, value
for metamorphic rock socket designs.

4. Results and Discussion

41 Results of Modulus of Deformability
from Back Analysis (Epp )

Table A1l comprehensively presents the data
extracted, analysed and evaluated in the
estimation of E,,;, under Pells and Turner [1]
criteria for both shear and complete socket
conditions, for a collection of cases in Sri
Lanka. As mentioned earlier, it has been
noticed during the load-settlement curve
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interpretation that, though all have reached
their maximum elastic deformation, most of
the piles have not reached even the partial-slip
condition. The maximum linear elastic phase
of the socket is found to occur at a total pile
displacement of around 0.004% to 1.0% of the
pile diameter, which is comparable with
results reported elsewhere [24].

Furthermore, Table A2 reports the E,, values
estimated for each location under all the five
design criteria (two for shear sockets and three
for complete sockets) mentioned in Table 5,
which include both shear and complete
sockets. Accordingly, the least values are
generated for complete sockets by both Pells
and Turner [1] and Kulhawy and Carter [14]
methods, while the latter generates the least.
Though Rowe and Armitage [15] method
facilitates the secondary slip behaviour of rock
sockets, it generates significantly high values
(about 73% higher than Kulhawy and Carter
[14] method), even after adopting a reduction
factor of 0.7 as suggested by the authors. Table
6 summarises the results for Pells and Turner
[1] and Kulhawy and Carter [14] methods.
Since there is no proven evidence to suggest
that any of the rock sockets concerned
belonged to the shear socket category, the
analysis was continued further only for the
results obtained for complete rock sockets.

4.2 Appropriateness of Existing Empirical
Equations in the Design of Rock-Sockets

The set of values obtained for E,,, for complete
sockets (which is generally the lesser) has been
adopted to evaluate the RMSE against the
values estimated through empirical equations
Eem- The results are reported in Table 7 and
as it depicts, Equations (6) to (9¢c) produce the
least RMSE values under all the design criteria.
Out of the three main design criteria, Pells and
Turner [1] and Kulhawy and Carter [14]
methods produce reasonably lower results,
whilst Rowe and Armitage [15] method yields
considerably higher deviation. Equation (9¢)
performs best among other equations,
followed by (6) for Kulhawy and Carter [14]
method, while (6) and (7) perform well for
Pells and Turner [1] method. Out of the

Equations (1) to (4), which solely depend on
intact parameters, Equations (2) and (3)
perform best under Kulhawy and Carter [14]
method and the performance of both equations
are better when compared to the remaining
two in Pells and Turner [1] method. Though
RMSE provides the level of the overall
predictability = of  respective  empirical
equations, the same has been graphically
presented in Figures 4 (a) to 4 (c) to investigate
their sectorial behaviour for the results
obtained through Kulhawy and Carter [14]
method. As Figure 4 (a) depicts, Equation (1)
over predicts the rock mass deformability
value across all the intact deformability levels.
However careful observation shows that high-
end E,, values corresponding to high strength
(0,>100MPa)-fair (RQD>50%) rocks
reasonably match with Equation (1). Moreover,
majority of the actual deformability values
(Emp) lies in the proximity and below the
Heuze [25] lower bound solution of 20% of the
intact value. Considering the volumes
involved in the rock socket deformation
compared to the test volume and the
discontinuity intensity, the results obtained are
found to be appreciably consistent with the
Heuze [25] findings. Figure 4 (b) suggests that
Equations (2) or (3) performs best for medium
to low strength rocks (0.< 100MPa), while the
performance of both are appreciable for low
quality rocks across all the strength ranges.
Nevertheless, Equations (2) or (3) and
Equation (4) can be accepted as an envelope
which provides lower and upper bound
solutions, respectively. It is obvious from
Figure 4(c) that overall performance of
Equations (6) to (9c) observed in RMSE is not
graphically evidenced, most probably due to
lack of high-strength high-RQD  data.
Nevertheless, Equation (9c), which possesses
the least RMSE, fits with appreciable amount
of actual rock mass deformability values, and
Equation (9a) and Equation (9b) can be found
to produce an upper bound solution for most
of the cases, which agrees with the findings of
Zhang and Einstein [3]. Table 8 compares the
modulus reduction factors proposed by Coon
and Merritt [8] and O’'Neill et al. [17] with the
observations made in this study.

Table 6 - Summary of Results Obtained from Different Back Analysis Methods

Rock
criteria

socket  design

Difference between results obtained
from complete and shear sockets

Overall difference between
results obtained for complete
sockets from two methods

Range% Mean% Range% Mean%
Pells and Turner [1] 2.78-30.00 11.21
Kulhawy and Carter [14] 0.21-49.15 28.61 0.00-27.60 12.37
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Table 7 - The values of Root Mean Square Errors (RMSE) Estimated from the Empirical Equations
(E pem) against the Rock Mass Modulus of Deformability Values from Back Analysis ( E,,p )

Empirical Equation RMSE
Pells and Turner | Kulhawy and Carter | Rowe and Armitage
[1] [14] [15]
(1) Palmstrom and Singh [5] 12.85 13.01 12.48
(2) Rowe and Armitage [6] 10.01 8.91 14.57
(3) Prakoso [7] 10.15 9.05 14.73
(4) Palmstrom and Singh [5] 12.45 12.58 12.23
(5) Coon and Merritt [8] 10.97 11.05 18.15
(6) Bieniawski [9] 5.30 5.10 9.16
(7) Kulhawy and Goodman [10] 5.22 5.35 8.75
(8) Gardner [11] 5.51 5.57 8.98
(9.a) Zhang and Einstein [3] 9.73 8.65 14.41
(9.b) Zhang and Einstein [3] 6.56 7.18 7.66
(9.c) Zhang and Einstein [3] 5.51 4.97 9.73
" En(GPa) vs E(Gpa) E..(GPa) vs Unconfined Compressive Strength(c ) (Mpa)
w = 58 45
35 ’ 40 ’
J 1 35 . !
” ' 30 ¢ s
£ . g -
5 2 8 .
W20 - WF20 . * i
15 . . 15 - - : .
G ’//’// 10 _,".- N
. Lot s e e
AR i P AINE SRR
g LI et 8 o 0 50 100 150 200
s £ 2 2 & (6Pl o =0 @ A Unconfined Compressive Strength(c ) (MPa)
. tm from Kulhavwy and Carter B + Em from Kulhawy and Carter ~ --{Em from Equation 2)
— (em=0.2€i) - - (Em=0.5Ei) ~ - (Em from Equation 4} —[Em from Equation 3)

Figure 4(a) - Actual behaviour of (E,,) Figure 4(b) - Actual Behaviour of (E,,) against
against (E;) with existing empirical (o0.) with Existing Empirical Relationships
relationships

Em/Ei vs RQD

—

+ Em/Ei from Kulhawy and Carter — (Em/Ei from Equation 6) ==:-{Em/Ei from Equation 7) — -(Em/Ei from Equation 5/8.a)

— -(Em/Ei from Equation 8.b} — -{Em/Ei from Equation 9.a} — -(Em/Ei from Equation 9.b) — -(Em/Ei frem Equation 9.c}

Figure 4(c) - Behaviour of Deformability Modulus Ratio (E,,/E;) against (RQD) with Existing
Empirical Relationships
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Table 8 - Comparison of Modulus Reduction Factors Proposed by [8] and [17] with the Present
Results

RQD (%) E, /E;
Coon and Merritt | O’Neill et al. [17] Current study
[8] Range No. of Data
<25 <0.20 <0.05 - 00
25-50 <0.20 0.05-0.15 0.01-0.35 38
50-75 0.20-0.50 0.15-0.70 0.01*-0.57 30
75-100 0.50-1.00 0.70-1.00 0.15*-0.97 06

*Corresponds to low unconfined compressive strength (o.< 100MPa) results for E,, /E; < 0.2

As the Table 8 depicts, though a reasonable 4.3 Results on Regression Analysis
agreement prevails with previously suggested With the outcomes reached from section
values, distinct ranges of modulus reduction 42, a new set of equations have been
factors are not evident, especially for low tested for E,, against the intact
strength rock masses of RQD > 50%. deformability (E;),

Table 9 - Results of the Regression Analysis

Relationship Type of Equation Coefficient of
equation regression ()
E,, Vs UCS (o.) | Linear E,, = 0.1450, — 6.197... (17) 0.623
Log E, = 8.064Ino, —28.910... (18) 0.525
Exp E,, =0.148¢%933%%___(19) 0.863
Power E,, = 0.00020,2128... (20) 0.841
E,, VS E; Linear E,, = 0.353E; — 6.197... (21) 0.623
Log E,, = 8.064 InE; — 21.760... (22) 0.525
Exp E,, =0.148¢%081xE: _ (23) 0.863
Power E, = 0.002E;>'%%... (24) 0.841
E,./E;Vs RQD Linear E,/E; = 0.008RQD — 0.289... (25) 0.657
Log En/E; = 0.376In RQD — 1.353... (26) 0.598
Exp E,/E; =0.005¢%050%RQD " (27) 0.673
Power E,/E; =3.683x 10"°RQD*°'7... (28) 0.654
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Figure 6 (c) - Lower and Upper bound Solutions for Exponential Relationship between Rock
Quality Designation and Deformability Modulus Ratio

unconfined compressive strength, UCS (o)
and RQD through a regression analysis carried
out on results obtained from Kulhawy and
Carter [14] method. Table 9 summarise the
results, while Figures 5 (a) to 5 (c) depict their
respective graphical behaviour. Though Table
9 reports considerably higher regression (r)

values for relationships with o., Figure 5 (a)
suggests that Equation (19) performs best in all
strength categories, while both Equations (19)
and (20) perform equally well in medium to
low strength rocks (o.< 100 MPa). The
relationships with E;, depicted in Figure 5 (b),
are almost similar to the relationships with
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o.in Figure5 (a). Such can be expected,
since E; is estimated in this work by simple
multiplication of o, with a constant MR.
Surprisingly, the relationships with RQD
generate weaker r values. However, as Figure
5 (c) suggests, Equations (27) and (28) perform
reasonably well for all the RQD ranges.

Generally, the exponential and power type
equations perform exceptionally well with r
greater than 0.650, whilst the linear type
equations also perform well with all the three
investigated parameters withr greater than
0.600 in all three cases, which is quite
acceptable considering the previous findings
elsewhere.

In the practical application of the exponential
relationships, two upper and lower bound
solutions are proposed for Equations (19), (23)
and (27), as depicted in Figures 6 (a) to 6 (c).
Accordingly, all three equations generate
upper bound solutions of around 220% and
lower bound solutions of around 38% to 50%
of the E, estimated from the proposed
exponential relationships. Interestingly, these
upper and lower bound solutions match
reasonably with the solutions proposed by
Zhang and Einstein [3], which produce 180%
and 20% of the E,, as upper and lower bound
solutions, respectively. Also, the above bounds
proposed by this work are analogous with the
findings of Williams and Pells [13], in which
E,, obtained through back analysis varied
within 200% (upper bound) and 50% (lower
bound) of the E,, obtained from in-situ tests.

5. Conclusions and Recommendations

5.1 Conclusions

The significant outcomes of this study can be
broadly classified into the appropriateness of
established equations and the practical
application of the newly developed equations
in the estimation of rock mass deformability
modulus (E,,), in crystalline metamorphic
rocks. Based on the outcomes of the study,
following specific conclusions can be made,
which are thus valid for metamorphic rock
masses.

1. The values estimated for maximum
deformation in the linear elastic range and
the corresponding stress on rock socket for
non-instrumented load tests is within
acceptable range when compared with the
results of instrumented load test (though
very limited). Moreover, the elastic

deformations are comparable with the
results of the previous data bases
elsewhere. The difference between the E,,
estimated from Pells and Turner [1] and
Kulhawy and Carter [14] methods are
within acceptable range (latter produced
lower bound results), while Rowe and
Armitage [15] produce significantly high
results and the outcomes are consistent
with the results reported by Lacy and
Look [24]. Figure 4 (a) demonstrates that
results obtained for E,, are consistent with
the E,, to E; relationship proposed by
Heuze [25], at least conservative towards
lower limit. Hence, considering all the
above facts, it can be concluded that
results obtained are acceptable.

Though the overall performance of
Equation (1) is found to be poor, it is found
to produce reasonably acceptable results
for high strength (o.> 100 MPa)-fair
(RQD>50%) rocks and the results are
consistent with the comments made by the
originators, Palmstrom and Singh [5].

Apart from very few data points,
Equation (2) or Equation (3), and Equation
(4) create an envelope of E,, in which
Equations (2) and (3) act as lower bound
while Equation (4) as upper bound
solutions. Equation (2) or Equation (3)
performs exceptionally well for medium to
low strength (o.< 100 MPa) rock masses,
while Equation (4) performs well for high
strength (0.> 100 MPa) rocks, which is
consistent with the comments made by
Palmstrom and Singh [5].

The combined effects of E; and RQD are
better represented by Equation (9c), while
the Equations (6), (7) and (8) also produce
reasonable results.

The developed Equation (19) performs
reasonably well for all strength categories,
while both Equations (19) and (20)
perform equally well in medium to low
strength rocks (o,< 100 MPa). Similar
behaviour is observed for new Equations
(23) and (24).

The effects of discontinuities are better
represented by the new Equations (27) and
(28) and these also are found to perform
reasonably well for all RQD levels.
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5.2 Recommendations
In the estimation of E,, in the design of rock

sockets,
recommended for

criteria ~ can  be
different categories of

following

metamorphic rock masses.

1.

As a very crude measure, the following
modulus reduction factors can be
recommended to be adopted for higher
intact rock strength magnitudes, (o.> 100
MPa).

RQD (%) E,/E;
25-50 0.01-0.15
50-75 0.15-0.50
75-100 | 0.50-0.97

For medium to low intact rock strength
magnitudes (o,< 100 MPa) and Poor to
Very poor quality (RQD<50%), considering
the fact that intact properties govern the
behaviour of E,, in poor quality rock
masses [26], either the previously
established Equations (2) or (3) or else the
newly established Equations (19) and (20)
shall be adopted.

For high intact rock strength magnitudes
(0> 100 MPa) and Poor to Very poor
quality (RQD<50%), either the previously
established Equation (4) or else the newly
established Equation (19) shall be adopted.

For high strength magnitudes (o.> 100
MPa) and better than Fair quality
(RQD>50%),  either the previously
established Equation (1) (especially when
RQD>90%) or else the newly established
Equations (27) and (28) shall be adopted.
This is by considering the fact that E,, of
better-quality rock masses is controlled by
the geological discontinuities [26].

For medium to low intact rock strength
magnitudes (0,< 100 MPa) and better than
Fair quality (RQD>50%), either the
previously established Equation (9c)
(which may generally provide an upper
bound solution) or else the newly
established Equations (27) and (28) shall be
adopted.

In the adoption of Equations (19), (23) and
(27) in the above rock mass conditions,
appropriately factored E,, (ranges between
0.38 £, lower-bound to 2.2 E, upper-
bound) shall be adopted in rock socket

10.

designs, considering the other quality
parameters of the particular rock masses to
avoid unsafe or overdesign scenarios.

Though  the adoptability of the
investigated empirical equations has been
tested only for Kulhawy and Carter [14]
method, as Table 7 depicts, the
applicability is found to be reasonably
valid for Pells and Turner [1] method as
well. Hence the above recommendations
can be adopted for either of the methods
during the rock socket design.

As Table 6 suggests, the E,, estimated for a
shear socket vyields a value 30%
(maximum) higher than for a complete
socket with Pells and Turner [1] method
and it is as much as 50% when using
Kulhawy and Carter [14] method.
Conversely, E,, estimated from the
recommended criteria in this work (which
is based on the complete socket results)
can be conveniently adopted in shear
socket designs with a multiplication factor
equivalent to the reciprocal of the
maximum difference found with the two
different design criteria. That is 0.77 E,
and 0.66 E,, respectively, for Pells and
Turner [1] and Kulhawy and Carter [14]
methods. With such a design criterion,
designers can effectively shorten the rock
socket lengths in rock masses with
possible highly fractured - low strength
toe areas.

Careful observation of data suggests that
the database is more biased to poor quality
weaker rock formations. Hence it is
recommended to further refine the newly
proposed equations for high strength-good
quality rock masses.

In order to further improve the findings, it
is highly recommended to initiate similar
kind of studies from the inception of the
borehole investigations, from which all the
parameters relevant to joints as well as
weathering can be accurately obtained.
Secondly, rather than depending on
indirect transformations, the E; values
shall be experimentally determined with
appropriate post treatments on results. In
this work, neither in-situ test data (due to
non-availability) nor a considerable
number of instrumented load test results
have been considered. However, results of
these two stages are essential in such a
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study and these will need to be
amalgamated in such a comprehensive
study in the future, which will also
facilitate the adoptability of rock mass
related parameters such as RMR.
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Table A2 - Results on the Estimation of Rock Mass Deformability Modulus through Back Analysis
(Emp) with all Five Design criteria

Pells & Turner [1] Kulhawy & Carter [14] Rowe & Armitage [15]
Location 1,(Shear) |1, (Complete) 1,(Shear) |1, (Complete) 1,(Complete) .

Embs (GPa) | Enbe (GPa) | Enp (GPa) Embs (GPa) | Eppc (GPa) | Epp (GPa) Embe (GPa) | E p (GPa)
Colombo 01 0.318 0.305 3.378 3.240 3.24( 0.310 0.285 3.293 3.028 3.03| 0.600 6.374 446
Colombo 01 0.280 0.250 1.085 0.969 0.97| 0.270 0.190 1.046 0.736 0.74| 0515 1.996 1.40
Colombo 08 0.300 0.260 1.316 1.140 1.14( 0.280 0.235 1.228 1.031 1.03| 0.580 2.544 1.78
Alawwa 0.350 0.310 11.567 10.245 10.25| 0.330 0.275 10.906 9.088 9.09| 0.720 23.795 16.66
Alawwa 0.310 0.260 0.832 0.698 0.70( 0.282 0.225 0.757 0.604 0.60| 0.560 1.504 1.05
Colombo 01 0.320 0.300 2.717 2.547 2.55( 0.300 0.265 2.547 2.250 2.25| 0.610 5.180 3.63
Colombo 01 0.315 0.300 1.524 1.451 145 0.302 0.268 1.461 1.297 1.30| 0.620 3.000 2.10
Colombo 01 0.325 0.280 1.545 1.331 1.33| 0.328 0.272 1.560 1.293 1.29| 0.710 3.376 2.36
Colombo 01 0.230 0.200 0.422 0.367 0.37| 0.230 0.175 0.422 0.321 0.32| 0.410 0.752 0.53
Colombo 01 0.310 0.290 6.223 5.822 5.82( 0.380 0.285 7.629 5.721 5.72] 0.780 15.659 10.96
Colombo 01 0.280 0.260 1.024 0.951 095 0.288 0.205 1.053 0.750 0.75| 0.540 1.975 1.38
Colombo 01 0.260 0.240 0.814 0.752 0.75( 0.278 0.190 0.871 0.595 0.59| 0480 1.503 1.05
Narammala 0.270 0.250 0172 0.159 0.16( 0.280 0.196 0.178 0.125 0.12| 0.500 0.318 0.22
Narammala 0.330 0.310 7.642 7.179 718 0.380 0.288 8.800 6.670 6.67( 0.800 18.527 1297
Narammala 0.310 0.300 6.005 5.811 5.81| 0.360 0.280 6.974 5424 542 0.790 15.303 10.71
Alawwa 0.590 0.555 25.521 24.007 24.01( 0.530 0.480 22.926 20.763 20.76( 1.000 43.257 30.28
Alawwa 0.460 0.440 6.648 6.358 6.36| 0470 0.385 6.792 5.564 5.56| 0.960 13.873 9.71
Colombo 02 0.320 0.280 11.103 9.715 9.71| 0.298 0.255 10.339 8.847 8.85| 0.615 21.338 14.94
Alawwa 0.270 0.240 0.902 0.802 0.80( 0.274 0.198 0.916 0.662 0.66| 0.450 1.504 1.05
Colombo 01 0.260 0.250 0.985 0.947 0.95( 0.280 0.215 1.061 0.815 0.81| 0.570 2.159 1.51
Colombo 07 0.310 0.245 1.617 1.278 1.28| 0.282 0.216 1471 1.127 1.13| 0.585 3.052 214
Colombo 07 0.300 0.260 3.075 2.665 2.67| 0.284 0.214 2911 2.194 219| 0.565 5.792 4.05
Colombo 07 0.270 0.240 5.443 4.838 4.84| 0.272 0.197 5.483 3.971 3.97| 0.430 8.668 6.07
Colombo 07 0.330 0.280 2.840 2410 241 0.296 0.264 2.547 2.272 2.27| 0.610 5.250 3.67
Colombo 07 0.325 0.275 4.295 3.634 3.63 0.299 0.265 3.951 3.502 3.50( 0.612 8.087 5.66
Colombo 07 0.315 0.270 2.033 1.743 1.74( 0.283 0.226 1.826 1.459 1.46| 0.561 3.621 253
Colombo 07 0.310 0.280 5.422 4.898 490 0.326 0.273 5.702 4.775 4.78| 0.715 12.507 8.75
Colombo 07 0.270 0.240 2151 1.912 191 0272 0.194 2.167 1.545 1.55| 0430 3425 240
Colombo 07 0.265 0.240 3.760 3.406 341 0273 0.197 3.874 2.796 2.80| 0.450 6.386 447
Colombo 07 0.310 0.275 2.671 2.369 2.37| 0297 0.264 2.559 2274 2.27| 0.610 5.255 3.68
Wellampitiya 0.240 0.225 0.842 0.789 0.79| 0272 0.186 0.954 0.652 0.65| 0.460 1.614 1.13
Colombo 08 0.230 0.210 0.761 0.694 0.69| 0.268 0.182 0.886 0.602 0.60| 0.425 1.406 0.98
Kurunagala 0.270 0.240 0.183 0.162 0.16| 0.270 0.185 0.183 0.125 0.13| 0.470 0.318 0.22
Kurunagala 0.600 0.580 38.538 37.253 37.25( 0.526 0.480 33.785 30.830 30.83( 1.000 64.230 44.96
Kurunagala 0.325 0.285 5.835 5117 512 0.350 0.285 6.284 5.117 512| 0.710 12.747 8.92
Kerawalapitiya 0.280 0.250 0.880 0.786 0.79( 0.276 0.191 0.867 0.600 0.60| 0.490 1.540 1.08
Katubedda 0.290 0.280 6.003 5.796 5.80( 0.336 0.275 6.955 5.692 5.69| 0.725 15.007 10.51
Katubedda 0.310 0.290 4.308 4.031 4.03( 0.320 0.280 4.447 3.892 3.89| 0.610 8.478 5.93
Wellampitiya 0.280 0.240 1.244 1.066 1.07( 0.286 0.202 1.270 0.897 0.90| 0485 2154 1.51
Peliyagoda 0.330 0.320 4.623 4.483 448( 0.380 0.290 5.324 4.063 4.06| 0.800 11.208 7.85
Kerawalapitiya 0.270 0.240 0.405 0.360 0.36| 0.268 0.183 0.402 0.274 0.27| 0.465 0.697 0.49
Kerawalapitiya 0.265 0.245 0.320 0.296 0.30( 0.270 0.187 0.326 0.226 0.23| 0475 0.574 0.40
Ambepussa 0.600 0.580 25.348 24.503 2450 0527 0.482 22.264 20.363 20.36( 1.000 42.247 29.57
Ambepussa 0.270 0.240 0.450 0.400 040 0.274 0.198 0.457 0.330 0.33| 0.485 0.808 0.57
Colombo 13 0.350 0.335 9.008 8.622 8.62| 0.400 0.310 10.295 7.979 7.98 0.860 22134 15.49
Colombo 13 0.370 0.360 15.948 15.517 1552 0425 0.312 18.318 13.448 13.45( 0.870 37.499 26.25
Colombo 13 0.370 0.360 7.443 7.242 7.24| 0410 0.298 8.248 5.995 5.99| 0.865 17.401 12.18
Mirigama 0.600 0.580 42.164 40.758 40.76| 0.515 0.485 36.190 34.082 34.08| 1.000 70.273 49.19
Ambepussa 0.340 0.280 11.943 9.835 9.84( 0.386 0.278 13.559 9.765 9.77| 0.720 25.291 17.70
Mirigama 0.560 0470 49.491 41.537 4154 0471 0.470 41.625 41.537 41.54( 0.970 85.725 60.01
Ambepussa 0.270 0.240 0.480 0427 043 0.260 0.180 0.462 0.320 0.32| 0475 0.845 0.59
Mirigama 0.270 0.240 0.145 0.129 0.13( 0.258 0.175 0.139 0.094 0.09| 0.465 0.250 0.17
Ambepussa 0.280 0.250 0.783 0.699 0.70( 0.266 0.181 0.744 0.506 0.51| 0.490 1.370 0.96
Colombo 07 0.300 0.260 1.836 1.591 1.59| 0.286 0.202 1.750 1.236 1.24| 0.500 3.060 214
Colombo 02 0.310 0.270 1.762 1.535 1.54| 0.310 0.245 1.762 1.393 1.39| 0.615 3.496 245
Colombo 02 0.320 0.310 4.027 3.901 3.90( 0.320 0.278 4.027 3.498 3.50| 0.715 8.997 6.30
Colombo 02 0.330 0.315 4.026 3.843 3.84| 0.321 0.279 3.916 3.403 3.40| 0.710 8.661 6.06
Colombo 02 0.320 0.310 6.066 5.877 5.88| 0.374 0.288 7.090 5.460 5.46| 0.765 14.502 10.15
Colombo 01 0.260 0.210 0.472 0.381 0.38| 0.230 0.173 0.417 0.314 0.31| 0.380 0.690 0.48
Colombo 01 0.300 0.280 18.174 16.962 16.96| 0.323 0.278 19.567 16.841 16.84| 0.713 43.194 30.24
Colombo 01 0.260 0.200 0.890 0.685 0.68( 0.245 0.186 0.839 0.637 0.64| 0425 1.455 1.02
Colombo 01 0.270 0.210 0.741 0.577 0.58( 0.250 0.190 0.687 0.522 0.52| 0430 1.181 0.83
Colombo 01 0.310 0.275 2.803 2487 249( 0.305 0.265 2.758 2.396 240| 0.620 5.607 3.92
Colombo 01 0.315 0.270 4.626 3.965 3.96( 0.323 0.270 4.743 3.965 3.96| 0.713 10471 7.33
Colombo 01 0.290 0.265 1.827 1.670 1.67( 0.280 0.265 1.764 1.670 1.67| 0.540 3.402 2.38
Colombo 01 0.260 0.220 0.745 0.631 0.63| 0272 0.186 0.780 0.533 0.53| 0.450 1.290 0.90
Colombo 01 0.260 0.230 0.718 0.635 0.63| 0.264 0.177 0.729 0.489 0.49| 0.440 1.215 0.85
Colombo 02 0.270 0.230 1.074 0.915 091 0.268 0.192 1.066 0.764 0.76| 0.470 1.869 1.31
Colombo 02 0.320 0.300 5.911 5.541 554 0.382 0.279 7.056 5.154 5.15| 0.795 14.685 10.28
Colombo 02 0.310 0.290 2.759 2.581 258 0.299 0.266 2.661 2.367 2.37| 0.630 5.606 3.92
Colombo 02 0.310 0.290 2572 2.406 241 0.298 0.268 2473 2.224 222| 0.624 5.178 3.62
Colombo 02 0.430 0.400 43.757 40.705 40.70| 0.450 0.368 45.793 37.448 37.45( 0.910 92.603 64.82
Colombo 02 0.340 0.320 2442 2.299 2.30( 0.375 0.281 2.694 2.019 2.02| 0.800 5.747 4.02
Colombo 02 0.260 0.220 0.672 0.569 0.57( 0.266 0.194 0.688 0.502 0.50| 0.460 1.189 0.83
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