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Estimation Criteria for Static Rock Mass 
Deformability Modulus for Rock-Socket Design in 

Metamorphic Rock Masses 
M.N.C. Samarawickrama, U.G.A. Puswewala, H.S. Thilakasiri and

K.M.L.A. Udamulla

Abstract:  This study investigates the most appropriate empirical criteria to estimate the static 
rock mass deformability modulus (𝐸𝐸𝑚𝑚) in the design of rock-sockets in cast-in-situ bored pile 
construction. The in-situ 𝐸𝐸𝑚𝑚 values are initially estimated through back analysis of static pile load test 
data. Secondly, the rock mass deformability estimated from back analysis (𝐸𝐸𝑚𝑚𝑚𝑚) are tested statistically 
against selected established empirical equations to determine whether the latter are appropriate for 
use in metamorphic rock terrain of Sri Lanka. It is found that the existing empirical criterion based on 
the square root of intact unconfined compressive strength (𝜎𝜎𝑐𝑐) derived from back analysis of pile load 
test results is appropriate for weak-poor rock masses. For strong-poor rocks, it is recommended to 
employ the equation based on 𝜎𝜎𝑐𝑐, and in general the two equations generate lower and upper bound 
solutions. The equation based on intact deformability modulus (𝐸𝐸𝑖𝑖) performs well in strong-excellent 
quality rock masses, while the equations based on 𝐸𝐸𝑖𝑖  and rock quality designation (𝑅𝑅𝑅𝑅𝑅𝑅) are found to 
be appropriate for weak-fair to excellent rock masses.  Finally, a new set of equations appropriate for 
different rock mass types have been proposed through regression analysis along with appropriate 
design measures to be adopted. 

Keywords: Rock mass deformability modulus, Intact deformability modulus, In-situ testing, 
Empirical method, Rock socket 

1. Introduction

Reasonable estimation of rock mass 
deformability modulus (𝐸𝐸𝑚𝑚) is essential when 
rock sockets are designed based on elastic 
theories. This requirement has a profound 
effect in strong crystalline rock masses 
compared to softer sedimentary formations as 
the elastic parameters are significantly higher 
in the former. Therefore, a significant impact is 
made by the parameter on the bearing capacity 
of rock sockets, especially in the skin friction 
component [1,2].   

When considering the significance of the static 
rock mass deformability modulus 𝐸𝐸𝑚𝑚 in rock 
socket design, it may be utilized to represent 
the linear elastic (no slip) as well as the non-
linearinelastic (partial or full slip) phase of the 
rock socket deformation during the load 
application. The values representing these two 
phases can be separately employed to estimate 
the ultimate skin friction and the 
corresponding settlements pertaining to each 
phase. 

However, the application of the 𝐸𝐸𝑚𝑚 into real 
design practice in the design of rock sockets is 
not common. This is mainly due to the 
investment that is required for the 

experimental evaluation of this parameter and 
even if such is made, the differences observed 
between the  measured   settlements   and   the 
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theoretical settlement estimations made by 
adopting the experimentally evaluated 𝐸𝐸𝑚𝑚 
results. 
 
It is reported that, the experimentally 
evaluated 𝐸𝐸𝑚𝑚 values themselves (both intact 
and in-situ) show considerable discrepancies 
due to dependency on the test method [3] and 
the geological anisotropy [4]. 
 
Under these circumstances, the commonly 
adopted practice in the estimation of 
𝐸𝐸𝑚𝑚 among the practitioners in the piling 
industry is through the established empirical 
equations, though it is found to be 
conservative.  Conversely, most of the 
empirical equations adopted in the rock socket 
designs are developed either from data bases 
established for comparatively weak rock 
masses or results obtained from different 
construction purposes such as tunnels, mines 
and dams.  
 
Hence this study has been carried out to 
identify the most appropriate criteria in the 
estimation of 𝐸𝐸𝑚𝑚 that suit stronger crystalline 
metamorphic rock mass conditions such as 
those found in Sri Lanka. Common empirical 
equations employed in the rock socket designs 
and their adoptability are initially investigated. 
 
Secondly the investigated empirical equations 
are tested to determine whether they are 
appropriate for use in design of rock sockets in 
crystalline metamorphic rock. Finally, a new 
set of empirical equations with better 

prediction capability are developed to estimate 
𝐸𝐸𝑚𝑚 for the design of rock sockets.  
 
2. Estimation of 𝑬𝑬𝒎𝒎 using Empirical 

Methods and Its use for Rock-
Socket Design 

 
2.1 Common Empirical Estimation Criteria 
for 𝑬𝑬𝒎𝒎  in Rock Socket Design 
Equations presented in Table 1 are commonly 
adopted due to their simplicity and data 
availability in rock socket designs. 
Nevertheless, apart from the equations 
presented in Table 1, there are equations which 
relate 𝐸𝐸𝑚𝑚 with degree of weathering (𝑊𝑊𝐷𝐷), 
rock mass classification systems, Rock Mass 
Rating (RMR), Rock Mass Quality (𝑄𝑄), 
Geological Strength Index (𝐺𝐺𝐺𝐺𝐺𝐺) and Rock 
Mass Index (𝑅𝑅𝑅𝑅𝑅𝑅) and the degree of 
disturbance due to excavation (𝐷𝐷) or as 
combinations of aforementioned parameters 
coupled with intact strength and deformability 
parameters.  The presently available borehole 
log data, which is the main source of 
information, lack certain essential data needed 
for the assessment of the appropriateness of 
such equations for the purpose of this work. 
Hence empirical equations which depend only 
on most commonly available data, such as 
Rock Quality Designation (𝑅𝑅𝑄𝑄𝐷𝐷) and the 
laboratory determined intact unconfined 
compressive strength (𝜎𝜎𝑐𝑐) or rock 
deformability modulus (𝐸𝐸𝑖𝑖), have been tested 
to determine whether they are appropriate for 
use in rock socket design. 
 

 
Table 1 – Commonly Employed Empirical Equations in the Estimation of 𝑬𝑬𝒎𝒎 for Rock Socket 
Design 

where, 𝐸𝐸𝑚𝑚- rock mass deformability modulus, 𝐸𝐸𝑖𝑖- intact deformability modulus,  𝜎𝜎𝑐𝑐- intact unconfined 
compressive strength,  𝑅𝑅𝑄𝑄𝐷𝐷- rock quality designation, ;𝐽𝐽- average joint spacing (mass factor) 

Empirical Equation Equation 
Number 

Author/s 

𝐸𝐸𝑚𝑚 = 0.5𝐸𝐸𝑖𝑖  … (1) Palmström and Singh [5] 
𝐸𝐸𝑚𝑚 = 215√𝜎𝜎𝑐𝑐  (MPa)  … (2) Rowe and Armitage [6] 
log10 𝐸𝐸𝑚𝑚 𝜎𝜎𝑐𝑐 ⁄ = 2.73 − 0.49 log10 𝜎𝜎𝑐𝑐 𝑃𝑃𝑎𝑎 ⁄  … (3) Prakoso [7] 
𝐸𝐸𝑚𝑚 = 0.2𝜎𝜎𝑐𝑐   (GPa)  … (4) Palmström and Singh [5] 
𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖⁄ = 0.0231 𝑅𝑅𝑄𝑄𝐷𝐷 − 1.32 … (5) Coon and Merritt [8] 
𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖⁄ = 𝑅𝑅𝑄𝑄𝐷𝐷 350⁄ ; 𝑅𝑅𝑄𝑄𝐷𝐷<70  … (6a) Bieniawski [9] 𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖⁄ = 0.2 + [(𝑅𝑅𝑄𝑄𝐷𝐷 − 70) 37.5]⁄ ; 𝑅𝑅𝑄𝑄𝐷𝐷>70     … (6b) 
𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖⁄ = 𝐽𝐽, related to 𝑅𝑅𝑄𝑄𝐷𝐷 … (7) Kulhawy and Goodman [10] 
𝑅𝑅𝑄𝑄𝐷𝐷 > 57%; Equation (5) … (8a) Gardner [11] 𝑅𝑅𝑄𝑄𝐷𝐷 < 57%; 𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖⁄ = 0.15 … (8b) 
𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖⁄ = 0.2 ∗ 10(0:0186𝑅𝑅𝑅𝑅𝑅𝑅−1:91)-Lower bound … (9a) Zhang and Einstein [3] 

 𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖⁄ = 1.8 ∗ 10(0:0186𝑅𝑅𝑅𝑅𝑅𝑅−1:91)-Upper bound … (9b) 
𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖⁄ = 10(0:0186𝑅𝑅𝑅𝑅𝑅𝑅−1:91)-Mean … (9c) 
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Equation (1) has been based on the 
consideration of the scale effects of 𝐸𝐸𝑖𝑖 on 𝐸𝐸𝑚𝑚 in 
rock blocks of 2 m to 4 m equivalent specimen 
diameter and considering the scale-based 
relationship between the unconfined 
compressive strength (𝜎𝜎𝑐𝑐 ) of test samples and 
rock blocks (𝜎𝜎𝑐𝑐𝑚𝑚 ). It is found to perform well 
in massive rocks with few or no joints [5]. 
Equation (4) is an extension of Equation (1), 
deduced for rocks with modulus ratio (𝑀𝑀𝑀𝑀) 
(the ratio between the intact deformability 
modulus and the unconfined compressive 
strength) of 400 [5]. Rowe and Armitage [6] 
have proposed Equation (2), based on the back 
analysis of a large number of load test results 
on piles socketed into weak rock [6]. They 
have proposed to apply a partial factor of 0.7 
in pile socket design when adopting Equation 
(2) to accommodate the factor proposed by 
other literature related to rock socket design 
under serviceability limit state. Equation (3) is 
an advanced version of Equation (2) and 
Prakoso [7] has used the same data base of 
Rowe and Armitage [6], which mainly 
included pile load test data pertaining to weak 
rock masses such as mudstone, shale and 
sandstone. The basis for Equation (5) is 
through a data base of in-situ 𝐸𝐸𝑚𝑚 obtained 
from relatively less fractured (RQD> 60%) 
rock masses underlying dam sites of mainly 
granite gneiss and gneiss formations, as well 
as limestone and sandstone in some locations. 
Actually, Equation (5) is only applicable to 
rock masses with 𝑀𝑀𝑅𝑅𝑅𝑅 ≥ 64%, else the 
elasticity modulus ratio (𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖⁄ ) (which in 
some instances is defined as modulus 
reduction factor) becomes negative. 
Nevertheless, Coon and Merritt [8] 
recommend the equation to be used in small 
projects, where conducting in-situ tests is 
uneconomical. Moreover, the equation has 
been proven to perform well in the evaluation 
of the safety of existing rock founded concrete 
dam foundations against flood-overtopping 
[12]. Coon and Merritt [8] have proposed the 
modulus reduction factors in Table 2 to be 
adopted for different ranges of 𝑀𝑀𝑅𝑅𝑅𝑅. Equations 
(6a) and (6b) are based on the plot developed 
by Bieniawski [9] on a data base of in-situ 𝐸𝐸𝑚𝑚 
 
Table 2 - Modulus Reduction Factors for 
Different RQD Levels [8] 

𝑀𝑀𝑅𝑅𝑅𝑅 (%) 𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖⁄  
00-25 <0.20 
25-50 <0.20 
50-75 0.20-0.50 
75-90 0.50-0.80 

90-100 0.80-1.00 

corresponding to both weaker rock formations 
(siltstone, mudstone, sandstone, greywacke 
and shale) and stronger rock formations 
(massive granite gneiss, phyllite and dolerite). 
Based on the plot developed by Bieniawski [9], 
subsequent literature has presented and 
recommended these two equations for 
different rock applications and also for rock 
socket design. By considering the theoretical 
concepts that jointed rock can be modelled as 
an equivalent elastic continuum and that the 
deformability of a jointed rock mass is the 
result of the stiffness of the rock itself and the 
stiffness of the joints, Kulhawy and Goodman 
[10] had proposed Equation (7). Gardner [11] 
improved Equation (5) suggesting the 
form 𝐸𝐸𝑚𝑚 = 𝛼𝛼𝐸𝐸 𝐸𝐸𝑖𝑖 where 𝛼𝛼𝐸𝐸 represents the 
coefficients given in Equation (5) to form 
Equation (8a) when 𝑀𝑀𝑅𝑅𝑅𝑅 > 57% and Equation 
(8b) when 𝑀𝑀𝑅𝑅𝑅𝑅 < 57%, where it becomes 0.15. 
It is noteworthy to mention that these two 
equations have two main limitations as 
suggested by Zhang and Einstein [3]. Firstly, it 
does not sufficiently cover the case of 𝑀𝑀𝑅𝑅𝑅𝑅 <
60%, where an arbitrary modulus reduction 
factor value is proposed. Secondly when  
𝑀𝑀𝑅𝑅𝑅𝑅 = 100% it results in 𝐸𝐸𝑚𝑚 = 𝐸𝐸𝑖𝑖, which is 
unrealistic and thus unsafe in design practice. 
This is because the case of 𝑀𝑀𝑅𝑅𝑅𝑅 = 100% does 
not always imply that the rock is intact as there 
may be discontinuities in rock masses and thus 
the actual 𝐸𝐸𝑚𝑚 may be less than 𝐸𝐸𝑖𝑖 even though 
RQD is 100% [3]. In order to mitigate the 
deficiencies identified in the various previous 
relationships on 𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖⁄  and 𝑀𝑀𝑅𝑅𝑅𝑅, Zhang and 
Einstein [3] have incorporated more data 
extracted from published literature into their 
data base with a greater range of 𝑀𝑀𝑅𝑅𝑅𝑅 (0 ≤
𝑀𝑀𝑅𝑅𝑅𝑅 ≤ 100%) and rock types (mudstone, 
siltstone, sandstone, shale, dolerite, granite, 
limestone, greywacke, gneiss, and granite 
gneiss). With the new data base, they have 
been able to develop Equation (9c) with two 
other equations which demarcate the lower 
bound Equation (9a) and upper bound 
Equation (9b) solutions for 𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖⁄  against 𝑀𝑀𝑅𝑅𝑅𝑅 
relationships. Unlike in previous instances, 
their relationships are found to be nonlinear, 
but with a better coefficient of regression. 
 
2.2 Appropriate Criteria for Rock Socket 
Design 
Pells and Turner [1] have pioneered the 
dominant use of elastic parameters of rock in 
the design of rock sockets by producing 
settlement estimation charts for different 
socket types and geometries, in which 
𝐸𝐸𝑚𝑚 plays an integral role. They proposed 
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elastic solutions for the settlement of shear 
sockets, flexible or rigid type end-bearing 
sockets (considering a loaded circular area at 
the base of a shaft), and for complete sockets 
(which offer resistance by skin friction over the 
socket wall as well as end bearing at the base 
of shaft). They further suggest modified 
solutions for recessed shafts due to 
embedment, while reporting that their 
solutions for the settlement of end-bearing 
bases better represent the case of flexible 
footings (hard rock) compared to that of rigid 
footings (soft rock). Moreover, Pells and 
Turner [1] have suggested adopting the 
settlement reduction factors yielded by 
solutions for rigid footings when 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝐸𝐸𝑚𝑚>50 
and otherwise through solutions proposed for 
flexible footings. Pells and Turner [1] also 
recommend a criterion to estimate 𝐸𝐸𝑚𝑚 through 
back analysis of pile load tests to verify the 
accuracy of the design solution. Coupling the 
field and laboratory experimental results with 
the elastic solution of Pells and Turner [1], 
Williams and Pells [13] introduced a side 
resistance reduction factor for rock sockets for 
the estimation of ultimate rock socket skin 
friction for a particular rock zone. The side 
resistance reduction factor (𝛽𝛽) represents the 
reduction of lateral confinement which is 
experimentally found to be proportionately 
related to 𝐽𝐽 (mass factor) = 𝐸𝐸𝑚𝑚 𝐸𝐸𝑝𝑝⁄ , given in 
Equation (7) and has also been directly related 
to the joint spacing and hence 𝑅𝑅𝑅𝑅𝑅𝑅 [10]. 
Williams and Pells [13] demonstrated that in-
situ 𝐸𝐸𝑚𝑚 can be estimated through back analysis 
of field load test results on piles to an accuracy 
of within 2 times (upper bound) and 0.5 times 
(lower bound) of the 𝐸𝐸𝑚𝑚 estimated from in-situ 
pressure-meter test results. Comprehensive 
elastic solutions have been proposed by 
Kulhawy and Carter [14] in the design of rock 
sockets and they concluded that elastic 
solutions for shear sockets are more accurate 
for larger 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝐸𝐸𝑚𝑚 ratios (soft rocks), while 
solutions for complete sockets are found to be 
conservative but satisfactory for most of the 
design cases. Similar elastic solutions, but 
extending to displacements up to full-slip 
conditions, have been proposed by Rowe and 
Armitage [15], in which all the design 
solutions are graphically presented in the form 
of 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝐸𝐸𝑚𝑚 ratio, making the deformability 
modulus an integral component. They 
recommend to adopt their own empirical 
Equation (2), arrived through back analysis of 
pile load test results, with a partial safety 
factor of 0.70 to compensate for any 
uncertainties.  

Similar to the estimation of 𝐸𝐸𝑚𝑚, a substantial 
number of empirical formulae are available for 
the estimation of bearing capacity in the 
design of rock sockets. Though the basis for 
most of the design solutions are 
aforementioned elastic solutions, the time and 
cost involved in obtaining the required 
parameters like 𝐸𝐸𝑚𝑚 have caused the 
practitioners to resort to cheaper empirical 
means with reasonable accuracy to obtain such 
parameters. The best example is the popularly 
adopted rock socket skin friction estimation 
criteria proposed by Williams and Pells [13]. 
Though it has originated through a theoretical-
experimental background, the way it is 
adopted in the design [16] involves a high 
degree of empiricism. As an extended version 
to Table 2 [8], O’Neill et al. [17] proposed 
modulus reduction factors presented in Table 
3 by considering the joint characteristics, for 
the design of rock sockets.  
 
Table 3 – Modulus Reduction Factors Based 
on RQD Levels [17] 
 

𝑅𝑅𝑅𝑅𝑅𝑅 (%) 𝐸𝐸𝑚𝑚 𝐸𝐸𝑝𝑝⁄  
Closed Joints  Open Joints 

100   1.00 0.60 
70   0.70 0.10 
50   0.15 0.10 
20   0.05 0.05 

Moreover, Load and Resistance Factor Design 
for Bridge Design Specifications (LRFDBDS) 
[18] proposes to adopt the least of the two 
values obtained for 𝐸𝐸𝑝𝑝, from intact core sample 
test and from Equation (10), for the design of 
rock sockets.  
𝐸𝐸𝑚𝑚 = 𝐸𝐸𝑝𝑝 [𝐸𝐸𝑚𝑚

𝐸𝐸𝑖𝑖
]

𝑡𝑡
                … (10) 

where, 
𝐸𝐸𝑝𝑝 – Obtained from intact core sample test, and 
[𝐸𝐸𝑚𝑚

𝐸𝐸𝑖𝑖
]

𝑡𝑡
- Obtained from Table 3. 

 
When laboratory estimated 𝐸𝐸𝑝𝑝 data are not 
available, Equation (11) proposed by Hoek and 
Diederichs [19] can be objectively adopted.  
 
𝐸𝐸𝑝𝑝 = 𝑀𝑀𝑅𝑅 ∗ 𝜎𝜎𝑐𝑐               … (11) 
 
where, 
𝑀𝑀𝑅𝑅- modulus ratio, representing the ratio 
between the intact deformability modulus and 
the unconfined compressive strength, which is 
generally found to be constant (at least in a 
range) for a particular rock type and a texture 
[5,19].  
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In combination with Equations (7) and (11), BS 
8004:1986 [20] proposes Equation (12) to 
estimate 𝐸𝐸𝑚𝑚.  
𝐸𝐸𝑚𝑚 = 𝐽𝐽 ∗ 𝑀𝑀𝑀𝑀 ∗ 𝜎𝜎𝑐𝑐                                           … (12) 

This approach has also been recommended by 
Williams and Pells [13] and is abundantly used 
as an indirect empirical approach in the rock 
socket design [16]. 
 
3. Methodology 
 
The following methodology was adopted in 
this work, which resembles the processes 
adopted in a number of similar previous 
studies.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 – Conceptual Study Framework 
(where, 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚- empirically evaluated rock mass 
deformability modulus; 𝐸𝐸𝑚𝑚𝑚𝑚- rock mass 
deformability modulus evaluated from back 
analysis of pile load test data) 
 
As depicted in Figure 1, the rock mass 
deformability modulus (𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚) is initially 
estimated using different empirical formulae 
reported in Table 1. 
 
Due to the non-availability of in-situ 𝐸𝐸𝑚𝑚 data, 
the technique of back analysis of pile load test 
data, which had previously been used by 
many research studies in pile foundation 
designs, has been adopted to estimate the in-
situ 𝐸𝐸𝑚𝑚 in this work. Estimation of in-situ 
𝐸𝐸𝑚𝑚 was carried out in two stages, viz., first to 
estimate the elastic settlement component of 
the rock socket and then to evaluate 𝐸𝐸𝑚𝑚 
corresponding to the estimated elastic 
settlement.  
 
The estimation of elastic settlements 
corresponding to rock socket section of the pile 

was carried out through the load-displacement 
curve interpretation techniques. The 
availability of fully instrumented static load 
test data in the Sri Lankan context is very rare 
due to its high cost, while general static load 
test data are available to some extent. Out of 
such, availability of complete sets of data to 
the authors was further limited. The limited 
available data on instrumented load tests were 
not fully adoptable for this work as most of the 
rock sockets had not even reached the ultimate 
elastic limit due to, either the majority of the 
skin friction resistance had already been taken 
through the very thick soil profile or else the 
load had been taken by the lengthy rock 
sockets. Therefore, only 74 numbers of 
conventional static load test data were 
employed with the generous courtesy of the 
respective project owners and piling 
contractors.  
 
Unlike in fully instrumented load tests, 
estimation of the elastic deformations 
corresponding to the rock sockets through 
conventional non-instrumented static load test 
data was cumbersome. Nevertheless, it was 
carried out in a three-staged process. Initially, 
the total elastic settlement of the pile was 
estimated using the procedure described by 
Thilakasiri et al. [21] as depicted in Figure 2. 
This is by drawing a tangent to the initial 
straight section of the load settlement curve 
and obtaining the maximum settlement of the 
pile corresponding to the farthest point of 
tangency on the load settlement curve. In the 
second stage, ultimate skin friction force 
(𝑈𝑈𝑠𝑠) generated along the shaft by the 
surrounding soils was estimated with 
Equation (13) under the following 
assumptions: (i) the vertical stress distribution 
along the shaft follows the critical depth 
concept [22]; and (ii) majority of the soil layers 
along the pile shaft have been mobilised to 
their respective ultimate skin friction levels by 
the time the rock socket reached its maximum 
elastic limit. In the third stage, the resultant 
elastic shortening of the pile due to the 
downward total applied force (𝑃𝑃𝑇𝑇) and the 
ultimate frictional resistance acting upwards 
(𝑈𝑈𝑠𝑠) generated by the surrounding soils were 
estimated using the technique proposed by 
Fleming [23] as elaborated in Figure 3 with 
Equation (14). Finally, the obtained resultant 
deformation was eliminated from the initially 
estimated total settlement to determine the 
elastic deformation corresponding to the rock 
socket section of the pile. The procedure 
adopted for non-instrumented load tests has 

Estimation of 
𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 from 
borehole and 
lab test data 

Estimation of 𝐸𝐸𝑚𝑚𝑚𝑚 
from back analysis 
of the elastic 
settlements from 
pile load test data 

Comparison of deformability modulus 
obtained 

Recommend the most appropriate 
empirical estimation of criteria to 
estimate the static rock mass 
deformability modulus  



ENGINEER 20

 

been tested for a limited number of available 
instrumented load tests as well, which 
produced reasonably accurate results (within 
15%) on the elastic deformation of the rock 
socket as depicted in Table 4. 
 
∅𝑜𝑜 = ∅′ − 3              … (13) 

where, 
∅′ - Effective angle of internal friction of soil 
strata prior to the installation of a bored pile 
∅𝑜𝑜– Modified effective angle of internal friction 
of soil strata subsequent to the installation of a 
bored pile. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – Establishment of Initial Elastic Deformation Range from Load- Settlement Curve [21] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 3 – Simplified Method of Evaluating the Elastic Shortening of the Shaft [23] 

 
Table 4 – Comparison of Results Obtained from Instrumented Load Test and Flemming [23] 
Method  
Location Instrumented Load Test Method adopted for non-instrumented 

Load Test in this study 
Ultimate elastic 
stress on rock 
socket (kPa) 

Corresponding elastic 
displacement of rock 
socket (mm) 

Ultimate elastic 
stress on rock 
socket (kPa) 

Corresponding elastic 
displacement of rock 
socket (mm) 

Colombo 1 63.38 3.10 55.01 2.76 

KELF 

Friction free or 
low friction 
zone 

Friction load 
transfer length 

Centroid of 
friction transfer 
diagram 

L0 

LF 

PT 

(PT - Us) for PT> Us Mobilized base 
load 
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The elastic shortening of the pile (∆𝑆𝑆𝑆𝑆) is 
obtained through the parameters depicted in 
Figure 3.   
 
∆𝑆𝑆𝑆𝑆= 4

𝜋𝜋
1

𝐷𝐷𝑠𝑠2𝑆𝑆𝑐𝑐
[𝑃𝑃𝑇𝑇(𝐿𝐿0 + 𝐿𝐿𝐹𝐹) − 𝐿𝐿𝐹𝐹𝑈𝑈𝑠𝑠(1 − 𝐾𝐾𝑆𝑆)]… (14) 

 
where, 𝐷𝐷𝑠𝑠 is the diameter of the pile shaft 
and 𝐾𝐾𝑆𝑆 is the effective length factor 
representing the ratio between the depth to the 
centroid of friction transfer diagram (which is 
the diagrammatic representation of the 
frictional force enforced by different soil strata 
along the pile shaft) from the starting point of 
the friction load transfer section and the 
friction load transfer length (𝐿𝐿𝐹𝐹). In case of 
piles of non-circular sections, equivalent 
diameters can be used [23].     
 
The theoretical estimation of elastic settlements 
of the rock sockets concerned was carried out 
through three different widely used rock 
socket design criteria, which encompass linear 
elastic deformations, viz., Pells and Turner [1], 
Kulhawy and Carter [14] and Rowe and 
Armitage [15] criteria, respectively, given 
under Table 5. The respective elastic solutions 
are given in graphical form in the respective 
publications to obtain the settlement influence 
factor (𝐼𝐼𝜌𝜌) for different socket geometries and 
elastic modulus ratios (𝐸𝐸𝑝𝑝 𝐸𝐸𝑚𝑚⁄ ). With the 
established 𝐼𝐼𝜌𝜌, the elastic settlements 
evaluated for rock sockets through pile load 
test data discussed earlier were replaced with 
the corresponding elastic settlements (𝜌𝜌) in 
Equation (15) to obtain the back analysed 
deformability modulus of rock mass (𝐸𝐸𝑚𝑚𝑚𝑚): 
 
𝐸𝐸𝑚𝑚𝑚𝑚 = ⌊ 𝐹𝐹

𝑟𝑟𝜌𝜌⌋ 𝐼𝐼𝜌𝜌              … (15) 
 
where, 𝑟𝑟 – radius of the pile/socket, 𝐹𝐹 -
effective compressive load of the pile at the top 
of the rock socket, which was taken as 
 
𝐹𝐹 = 𝑃𝑃𝑇𝑇 − 𝑈𝑈𝑠𝑠              … (16) 
 
In order to use above elastic settlement charts, 
an initial estimate of 𝐸𝐸𝑚𝑚 is essential. For this 
purpose, the widely accepted criterion of 
Equation (11) was adopted to initially estimate 
the 𝐸𝐸𝑖𝑖 (since the availability of the parameter 
for projects in Sri Lanka is very sparse) with 
appropriate 𝑀𝑀𝑀𝑀 (Note: Findings of the authors 
for metamorphic rocks in Sri Lanka yield an 
average value of 412). Then, with the 
corresponding 𝐽𝐽 related to 𝑀𝑀𝑅𝑅𝐷𝐷 and from 
Equation (7), the initial estimate of 𝐸𝐸𝑚𝑚 was 
evaluated. Moreover, isotropic condition on 

𝐸𝐸𝑚𝑚 was assumed to prevail for rock-socket 
wall (𝐸𝐸𝑚𝑚) and end bearing rock (𝐸𝐸𝑚𝑚) and hence 
charts pertaining to 𝐸𝐸𝑚𝑚 𝐸𝐸𝑚𝑚⁄ = 1 were only 
considered in this analysis. The remaining 
factors, such as Poisson’s ratio (𝜈𝜈) of rock and 
pile were assumed as 0.25 (as described in the 
respective publications). As depicted in Table 
5, theoretical estimations can be carried out for 
both shear as well as complete socket 
conditions using the first and the second 
methods, while the third method facilitates 
only complete socket condition. Back analysis 
has been carried out for all the five design 
criteria and the corresponding deformability 
moduli (𝐸𝐸𝑚𝑚𝑚𝑚)  have been obtained.    
 
Table 5 – Analysis Method 
Rock socket design 
criteria 

Considered type of the 
socket condition 

Pells and Turner [1] Shear and Complete 
sockets 

Kulhawy and Carter 
[14] 

Shear and Complete 
sockets 

Rowe and Armitage 
[15] 

Complete socket 

 
The empirically evaluated rock mass 
deformability modulus (𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚)  obtained using 
the Equations (1) to (9c) were compared 
against the deformability modulus obtained 
through back analysis (𝐸𝐸𝑚𝑚𝑚𝑚) to check the 
appropriateness of each equation to estimate 
the static rock mass deformability modulus for 
rock socket designs in hard metamorphic rock 
such as those existing in Sri Lanka. This is by 
performing a Root Mean Square Error (RMSE) 
analysis. This technique has previously been 
used by a number of researchers for the same 
purpose.  The smaller the error generated, the 
better the predictive capacity of the particular 
equation. Finally, by performing linear as well 
as non-linear regression analyses using the 
Statistical Package for the Social Sciences 
(SPSS) software, a novel set of empirical 
equations are developed to obtain the 𝐸𝐸𝑚𝑚 value 
for metamorphic rock socket designs.  
 
4. Results and Discussion 
 
4.1 Results of Modulus of Deformability 
from Back Analysis (𝑬𝑬𝒎𝒎𝒎𝒎 ) 
Table A1 comprehensively presents the data 
extracted, analysed and evaluated in the 
estimation of 𝐸𝐸𝑚𝑚𝑚𝑚 under Pells and Turner [1] 
criteria for both shear and complete socket 
conditions, for a collection of cases in Sri 
Lanka. As mentioned earlier, it has been 
noticed during the load-settlement curve 
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interpretation that, though all have reached 
their maximum elastic deformation, most of 
the piles have not reached even the partial-slip 
condition. The maximum linear elastic phase 
of the socket is found to occur at a total pile 
displacement of around 0.004% to 1.0% of the 
pile diameter, which is comparable with 
results reported elsewhere [24].     
 
Furthermore, Table A2 reports the 𝐸𝐸𝑚𝑚𝑚𝑚  values 
estimated for each location under all the five 
design criteria (two for shear sockets and three 
for complete sockets) mentioned in Table 5, 
which include both shear and complete 
sockets. Accordingly, the least values are 
generated for complete sockets by both Pells 
and Turner [1] and Kulhawy and Carter [14] 
methods, while the latter generates the least. 
Though Rowe and Armitage [15] method 
facilitates the secondary slip behaviour of rock 
sockets, it generates significantly high values 
(about 73% higher than Kulhawy and Carter 
[14] method), even after adopting a reduction 
factor of 0.7 as suggested by the authors.  Table 
6 summarises the results for Pells and Turner 
[1] and Kulhawy and Carter [14] methods. 
Since there is no proven evidence to suggest 
that any of the rock sockets concerned 
belonged to the shear socket category, the 
analysis was continued further only for the 
results obtained for complete rock sockets. 
 
4.2 Appropriateness of Existing Empirical 
Equations in the Design of Rock-Sockets   
The set of values obtained for 𝐸𝐸𝑚𝑚𝑚𝑚 for complete 
sockets (which is generally the lesser) has been 
adopted to evaluate the RMSE against the 
values estimated through empirical equations 
𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚. The results are reported in Table 7 and 
as it depicts, Equations (6) to (9c) produce the 
least RMSE values under all the design criteria. 
Out of the three main design criteria, Pells and 
Turner [1] and Kulhawy and Carter [14] 
methods produce reasonably lower results, 
whilst Rowe and Armitage [15] method yields 
considerably higher deviation.   Equation (9c) 
performs best among other equations, 
followed by (6) for Kulhawy and Carter [14] 
method, while (6) and (7) perform well for 
Pells  and   Turner   [1]   method.   Out   of    the  

Equations (1) to (4), which solely depend on 
intact parameters, Equations (2) and (3) 
perform best under Kulhawy and Carter [14] 
method and the performance of both equations 
are better when compared to the remaining 
two in Pells and Turner [1] method. Though 
RMSE provides the level of the overall 
predictability of respective empirical 
equations, the same has been graphically 
presented in Figures 4 (a) to 4 (c) to investigate 
their sectorial behaviour for the results 
obtained through Kulhawy and Carter [14] 
method.  As Figure 4 (a) depicts, Equation (1) 
over predicts the rock mass deformability 
value across all the intact deformability levels. 
However careful observation shows that high-
end 𝐸𝐸𝑚𝑚 values corresponding to high strength 
(𝜎𝜎𝑐𝑐>100MPa)-fair (RQD>50%) rocks 
reasonably match with Equation (1). Moreover, 
majority of the actual deformability values 
(𝐸𝐸𝑚𝑚𝑚𝑚) lies in the proximity and below the 
Heuze [25] lower bound solution of 20% of the 
intact value. Considering the volumes 
involved in the rock socket deformation 
compared to the test volume and the 
discontinuity intensity, the results obtained are 
found to be appreciably consistent with the 
Heuze [25] findings.  Figure 4 (b) suggests that 
Equations (2) or (3) performs best for medium 
to low strength rocks (𝜎𝜎𝑐𝑐< 100MPa), while the 
performance of both are appreciable for low 
quality rocks across all the strength ranges. 
Nevertheless, Equations (2) or (3) and 
Equation (4) can be accepted as an envelope 
which provides lower and upper bound 
solutions, respectively. It is obvious from 
Figure 4(c) that overall performance of 
Equations (6) to (9c) observed in RMSE is not 
graphically evidenced, most probably due to 
lack of high-strength high-𝑅𝑅𝑅𝑅𝑅𝑅 data. 
Nevertheless, Equation (9c), which possesses 
the least RMSE, fits with appreciable amount 
of actual rock mass deformability values, and 
Equation (9a) and Equation (9b) can be found 
to produce an upper bound solution for most 
of the cases, which agrees with the findings of 
Zhang and Einstein [3]. Table 8 compares the 
modulus reduction factors proposed by Coon 
and Merritt [8] and O’Neill et al. [17] with the 
observations made in this study.  

 
Table 6 – Summary of Results Obtained from Different Back Analysis Methods 

Rock socket design 
criteria 

Difference between results obtained 
from complete and shear sockets 

Overall difference between 
results obtained for complete 
sockets from two methods 

Range% Mean% Range% Mean% 
Pells and Turner [1] 2.78-30.00 11.21 0.00-27.60 12.37 Kulhawy and Carter [14] 0.21-49.15 28.61 
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Figure 4(a) - Actual behaviour of (𝑬𝑬𝒎𝒎) 
against (𝑬𝑬𝒊𝒊) with existing empirical 
relationships 

Figure 4(b) - Actual Behaviour of (𝑬𝑬𝒎𝒎) against 
(𝝈𝝈𝒄𝒄) with Existing Empirical Relationships 

Table 7 – The values of Root Mean Square Errors (RMSE) Estimated from the Empirical Equations 
(𝑬𝑬𝒎𝒎𝒎𝒎𝒎𝒎) against the Rock Mass Modulus of Deformability Values from Back Analysis ( 𝑬𝑬𝒎𝒎𝒎𝒎 ) 
Empirical Equation  RMSE 

Pells and Turner 
[1] 

Kulhawy and Carter 
[14] 

Rowe and Armitage 
[15] 

(1) Palmström and Singh [5] 12.85 13.01 12.48 
(2) Rowe and Armitage [6] 10.01 8.91 14.57 
(3) Prakoso [7] 10.15 9.05 14.73 
(4) Palmström and Singh [5] 12.45 12.58 12.23 
(5) Coon and Merritt [8] 10.97 11.05 18.15 
(6) Bieniawski [9] 5.30 5.10 9.16 
(7) Kulhawy and Goodman [10] 5.22 5.35 8.75 
(8) Gardner [11] 5.51 5.57 8.98 
(9.a) Zhang and Einstein [3] 9.73 8.65 14.41 
(9.b) Zhang and Einstein [3] 6.56 7.18 7.66 
(9.c) Zhang and Einstein [3] 5.51 4.97 9.73 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
     

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4(c) – Behaviour of Deformability Modulus Ratio (𝑬𝑬𝒎𝒎 𝑬𝑬𝒊𝒊⁄ ) against (RQD) with Existing 
Empirical Relationships 
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Figure 5(a) – Relationship between 
Unconfined Compressive Strength and 
Deformability Modulus  
 

Figure 5(b) – Relationship between Intact 
Deformability Modulus and Deformability 
Modulus  
 
 

Table 8 – Comparison of Modulus Reduction Factors Proposed by [8] and [17] with the Present 
Results  

 
 
 
 
 
 
 
 
 
*Corresponds to low unconfined compressive strength (𝜎𝜎𝑐𝑐< 100MPa) results for 𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖 < 0.2⁄  
 
As the Table 8 depicts, though a reasonable 
agreement prevails with previously suggested 
values, distinct ranges of modulus reduction 
factors are not evident, especially for low 
strength rock masses of 𝑅𝑅𝑅𝑅𝑅𝑅 > 50%.  

 
4.3 Results on Regression Analysis 
With the outcomes reached from section 
4.2, a new set of equations have been 
tested for 𝐸𝐸𝑚𝑚, against the intact 
deformability (𝐸𝐸𝑖𝑖), 

 
Table 9 – Results of the Regression Analysis  

 
Relationship  Type of 

equation 
Equation Coefficient of 

regression (𝑟𝑟) 
𝐸𝐸𝑚𝑚 Vs 𝑈𝑈𝑈𝑈𝑈𝑈 (𝜎𝜎𝑐𝑐) Linear 𝐸𝐸𝑚𝑚 = 0.145𝜎𝜎𝑐𝑐 − 6.197… (17) 0.623 
 Log 𝐸𝐸𝑚𝑚 = 8.064 𝑙𝑙𝑙𝑙 𝜎𝜎𝑐𝑐 − 28.910… (18) 0.525 
 Exp 𝐸𝐸𝑚𝑚 = 𝑒𝑒0.033×𝜎𝜎𝑐𝑐… (19) 0.863 
 Power 𝐸𝐸𝑚𝑚 = 0.0002𝜎𝜎𝑐𝑐

2.128… (20) 0.841 
𝐸𝐸𝑚𝑚 Vs 𝐸𝐸𝑖𝑖 Linear 𝐸𝐸𝑚𝑚 = 0.353𝐸𝐸𝑖𝑖 − 6.197… (21) 0.623 
 Log 𝐸𝐸𝑚𝑚 = 8.064 𝑙𝑙𝑙𝑙 𝐸𝐸𝑖𝑖 − 21.760… (22) 0.525 
 Exp 𝐸𝐸𝑚𝑚 = 𝑒𝑒0.081×𝐸𝐸𝑖𝑖… (23) 0.863 
 Power 𝐸𝐸𝑚𝑚 = 0.002𝐸𝐸𝑖𝑖

2.128… (24) 0.841 
𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖⁄ Vs 𝑅𝑅𝑅𝑅𝑅𝑅 Linear 𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖⁄ = 0.008𝑅𝑅𝑅𝑅𝑅𝑅 − 0.289… (25) 0.657 
 Log 𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖⁄ = 0.376 𝑙𝑙𝑙𝑙 𝑅𝑅𝑅𝑅𝑅𝑅 − 1.353… (26) 0.598 
 Exp 𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖⁄ = 𝑒𝑒0.050×𝑅𝑅𝑅𝑅𝑅𝑅… (27) 0.673 
 Power 𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖⁄ = × 10−6𝑅𝑅𝑅𝑅𝑅𝑅2.517… (28) 0.654 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

𝑅𝑅𝑅𝑅𝑅𝑅 (%) 𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖⁄  
Coon and Merritt 
[8] 

O’Neill et al. [17] Current study 
Range No. of Data  

<25 <0.20 <0.05 - 00 
25-50 <0.20 0.05-0.15 0.01-0.35 38 
50-75 0.20-0.50 0.15-0.70 0.01*-0.57 30 
75-100 0.50-1.00 0.70-1.00 0.15*-0.97 06 
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Figure 6(a) – Lower and Upper bound 
Solutions for Exponential Relationship 
between Unconfined Compressive 
Strength and Deformability Modulus  
 

Figure 6(b) – Lower and Upper bound 
Solutions for Exponential Relationship 
between Intact Deformability Modulus and 
Deformability Modulus  
 

Figure 6 (c) – Lower and Upper bound Solutions for Exponential Relationship between Rock 
Quality Designation and Deformability Modulus Ratio  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5(c) – Relationship Between Rock Quality Designation and Deformability Modulus Ratio  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

unconfined compressive strength, UCS (𝜎𝜎𝑐𝑐) 
and RQD through a regression analysis carried 
out on results obtained from Kulhawy and 
Carter [14] method. Table 9 summarise the 
results, while Figures 5 (a) to 5 (c) depict their 
respective graphical behaviour. Though Table 
9 reports considerably higher regression (𝑟𝑟) 

values for relationships with 𝜎𝜎𝑐𝑐, Figure 5 (a) 
suggests that Equation (19) performs best in all 
strength categories, while both Equations (19) 
and (20) perform equally well in medium to 
low strength rocks (𝜎𝜎𝑐𝑐< 100 MPa). The 
relationships with 𝐸𝐸𝑖𝑖, depicted in Figure 5 (b), 
are almost similar to the relationships with 



ENGINEER 26

 

𝜎𝜎𝑐𝑐 in Figure 5 (a). Such can be expected, 
since 𝐸𝐸𝑖𝑖 is estimated in this work by simple 
multiplication of 𝜎𝜎𝑐𝑐 with a constant 𝑀𝑀𝑀𝑀. 
Surprisingly, the relationships with 𝑀𝑀𝑅𝑅𝑅𝑅 
generate weaker 𝑟𝑟  values. However, as Figure 
5 (c) suggests, Equations (27) and (28) perform 
reasonably well for all the RQD ranges.  
 
Generally, the exponential and power type 
equations perform exceptionally well with 𝑟𝑟 
greater than 0.650, whilst the linear type 
equations also perform well with all the three 
investigated parameters with 𝑟𝑟 greater than 
0.600 in all three cases, which is quite 
acceptable considering the previous findings 
elsewhere. 
 
In the practical application of the exponential 
relationships, two upper and lower bound 
solutions are proposed for Equations (19), (23) 
and (27), as depicted in Figures 6 (a) to 6 (c). 
Accordingly, all three equations generate 
upper bound solutions of around 220% and 
lower bound solutions of around 38% to 50% 
of the 𝐸𝐸𝑚𝑚 estimated from the proposed 
exponential relationships. Interestingly, these 
upper and lower bound solutions match 
reasonably with the solutions proposed by 
Zhang and Einstein [3], which produce 180% 
and 20% of the 𝐸𝐸𝑚𝑚 as upper and lower bound 
solutions, respectively. Also, the above bounds 
proposed by this work are   analogous with the 
findings of Williams and Pells [13], in which 
𝐸𝐸𝑚𝑚 obtained through back analysis varied 
within 200% (upper bound) and 50% (lower 
bound) of the 𝐸𝐸𝑚𝑚 obtained from in-situ tests.  
 
5. Conclusions and Recommendations 

5.1 Conclusions     
The significant outcomes of this study can be 
broadly classified into the appropriateness of 
established equations and the practical 
application of the newly developed equations 
in the estimation of rock mass deformability 
modulus (𝐸𝐸𝑚𝑚), in crystalline metamorphic 
rocks. Based on the outcomes of the study, 
following specific conclusions can be made, 
which are thus valid for metamorphic rock 
masses. 
 
1. The values estimated for maximum 

deformation in the linear elastic range and 
the corresponding stress on rock socket for 
non-instrumented load tests is within 
acceptable range when compared with the 
results of instrumented load test (though 
very limited). Moreover, the elastic 

deformations are comparable with the 
results of the previous data bases 
elsewhere. The difference between the 𝐸𝐸𝑚𝑚 
estimated from Pells and Turner [1] and 
Kulhawy and Carter [14] methods are 
within acceptable range (latter produced 
lower bound results), while Rowe and 
Armitage [15] produce significantly high 
results and the outcomes are consistent 
with the results reported by Lacy and 
Look [24]. Figure 4 (a) demonstrates that 
results obtained for 𝐸𝐸𝑚𝑚 are consistent with 
the 𝐸𝐸𝑚𝑚 to 𝐸𝐸𝑖𝑖 relationship proposed by 
Heuze [25], at least conservative towards 
lower limit. Hence, considering all the 
above facts, it can be concluded that 
results obtained are acceptable.  
 

2. Though the overall performance of 
Equation (1) is found to be poor, it is found 
to produce reasonably acceptable results 
for high strength (𝜎𝜎𝑐𝑐> 100 MPa)-fair 
(𝑀𝑀𝑅𝑅𝑅𝑅>50%) rocks and the results are 
consistent with the comments made by the 
originators, Palmström and Singh [5]. 

 
3. Apart from very few data points, 

Equation (2) or Equation (3), and Equation 
(4) create an envelope of 𝐸𝐸𝑚𝑚, in which 
Equations (2) and (3) act as lower bound 
while Equation (4) as upper bound 
solutions. Equation (2) or Equation (3) 
performs exceptionally well for medium to 
low strength (𝜎𝜎𝑐𝑐< 100 MPa) rock masses, 
while Equation (4) performs well for high 
strength (𝜎𝜎𝑐𝑐> 100 MPa) rocks, which is 
consistent with the comments made by 
Palmström and Singh [5]. 

 
4. The combined effects of 𝐸𝐸𝑖𝑖 and 𝑀𝑀𝑅𝑅𝑅𝑅 are 

better represented by Equation (9c), while 
the Equations (6), (7) and (8) also produce 
reasonable results. 

 
5. The developed Equation (19) performs 

reasonably well for all strength categories, 
while both    Equations (19) and (20) 
perform equally well in medium to low 
strength rocks (𝜎𝜎𝑐𝑐< 100 MPa). Similar 
behaviour is observed for new Equations 
(23) and (24). 

 
6. The effects of discontinuities are better 

represented by the new Equations (27) and 
(28) and these also are found to perform 
reasonably well for all 𝑀𝑀𝑅𝑅𝑅𝑅 levels.  
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5.2 Recommendations  
In the estimation of 𝐸𝐸𝑚𝑚 in the design of rock 
sockets, following criteria can be 
recommended for different categories of 
metamorphic rock masses. 

1. As a very crude measure, the following 
modulus reduction factors can be 
recommended to be adopted for higher 
intact rock strength magnitudes, (𝜎𝜎𝑐𝑐> 100 
MPa). 

 

 

 

2. For medium to low intact rock strength 
magnitudes (𝜎𝜎𝑐𝑐< 100 MPa) and Poor to 
Very poor quality (𝑅𝑅𝑅𝑅𝑅𝑅<50%), considering 
the fact that intact properties govern the 
behaviour of 𝐸𝐸𝑚𝑚 in poor quality rock 
masses [26], either the previously 
established Equations (2) or (3) or else the 
newly established Equations (19) and (20) 
shall be adopted.  
 

3. For high intact rock strength magnitudes 
(𝜎𝜎𝑐𝑐> 100 MPa) and Poor to Very poor 
quality (𝑅𝑅𝑅𝑅𝑅𝑅<50%), either the previously 
established Equation (4) or else the newly 
established Equation (19) shall be adopted. 

 
4. For high strength magnitudes (𝜎𝜎𝑐𝑐> 100 

MPa) and better than Fair quality 
(𝑅𝑅𝑅𝑅𝑅𝑅>50%), either the previously 
established Equation (1) (especially when 
𝑅𝑅𝑅𝑅𝑅𝑅>90%) or else the newly established 
Equations (27) and (28) shall be adopted. 
This is by considering the fact that 𝐸𝐸𝑚𝑚 of 
better-quality rock masses is controlled by 
the geological discontinuities [26]. 

 
5. For medium to low intact rock strength 

magnitudes (𝜎𝜎𝑐𝑐< 100 MPa) and better than 
Fair quality (𝑅𝑅𝑅𝑅𝑅𝑅>50%), either the 
previously established Equation (9c) 
(which may generally provide an upper 
bound solution) or else the newly 
established Equations (27) and (28) shall be 
adopted.  

 
6. In the adoption of Equations (19), (23) and 

(27) in the above rock mass conditions, 
appropriately factored 𝐸𝐸𝑚𝑚 (ranges between 
0.38 𝐸𝐸𝑚𝑚 lower-bound to 2.2 𝐸𝐸𝑚𝑚 upper-
bound) shall be adopted in rock socket 

designs, considering the other quality 
parameters of the particular rock masses to 
avoid unsafe or overdesign scenarios.   

 
7. Though the adoptability of the 

investigated empirical equations has been 
tested only for Kulhawy and Carter [14] 
method, as Table 7 depicts, the 
applicability is found to be reasonably 
valid for Pells and Turner [1] method as 
well. Hence the above recommendations 
can be adopted for either of the methods 
during the rock socket design.  

 
8. As Table 6 suggests, the 𝐸𝐸𝑚𝑚 estimated for a 

shear socket yields a value 30% 
(maximum) higher than for a complete 
socket with Pells and Turner [1] method 
and it is as much as 50% when using 
Kulhawy and Carter [14] method. 
Conversely, 𝐸𝐸𝑚𝑚, estimated from the 
recommended criteria in this work (which 
is based on the complete socket results) 
can be conveniently adopted in shear 
socket designs with a multiplication factor 
equivalent to the reciprocal of the 
maximum difference found with the two 
different design criteria. That is 0.77 𝐸𝐸𝑚𝑚 
and 0.66 𝐸𝐸𝑚𝑚, respectively, for Pells and 
Turner [1] and Kulhawy and Carter [14] 
methods. With such a design criterion, 
designers can effectively shorten the rock 
socket lengths in rock masses with 
possible highly fractured – low strength 
toe areas. 

9. Careful observation of data suggests that 
the database is more biased to poor quality 
weaker rock formations. Hence it is 
recommended to further refine the newly 
proposed equations for high strength-good 
quality rock masses. 

10. In order to further improve the findings, it 
is highly recommended to initiate similar 
kind of studies from the inception of the 
borehole investigations, from which all the 
parameters relevant to joints as well as 
weathering can be accurately obtained. 
Secondly, rather than depending on 
indirect transformations, the 𝐸𝐸𝑖𝑖 values 
shall be experimentally determined with 
appropriate post treatments on results. In 
this work, neither in-situ test data (due to 
non-availability) nor a considerable 
number of instrumented load test results 
have been considered. However, results of 
these two stages are essential in such a 

𝑅𝑅𝑅𝑅𝑅𝑅 (%) 𝐸𝐸𝑚𝑚 𝐸𝐸𝑖𝑖⁄  
25-50 0.01-0.15 
50-75 0.15-0.50 
75-100 0.50-0.97 
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study and these will need to be 
amalgamated in such a comprehensive 
study in the future, which will also 
facilitate the adoptability of rock mass 
related parameters such as 𝑅𝑅𝑅𝑅𝑅𝑅. 
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Embs (GPa) Embc (GPa) Emb (GPa) Embs (GPa) Embc (GPa) Emb (GPa) Embc (GPa) E*
mb (GPa)

Colombo 01 0.318 0.305 3.378 3.240 3.24 0.310 0.285 3.293 3.028 3.03 0.600 6.374 4.46
Colombo 01 0.280 0.250 1.085 0.969 0.97 0.270 0.190 1.046 0.736 0.74 0.515 1.996 1.40
Colombo 08 0.300 0.260 1.316 1.140 1.14 0.280 0.235 1.228 1.031 1.03 0.580 2.544 1.78
Alawwa 0.350 0.310 11.567 10.245 10.25 0.330 0.275 10.906 9.088 9.09 0.720 23.795 16.66
Alawwa 0.310 0.260 0.832 0.698 0.70 0.282 0.225 0.757 0.604 0.60 0.560 1.504 1.05
Colombo 01 0.320 0.300 2.717 2.547 2.55 0.300 0.265 2.547 2.250 2.25 0.610 5.180 3.63
Colombo 01 0.315 0.300 1.524 1.451 1.45 0.302 0.268 1.461 1.297 1.30 0.620 3.000 2.10
Colombo 01 0.325 0.280 1.545 1.331 1.33 0.328 0.272 1.560 1.293 1.29 0.710 3.376 2.36
Colombo 01 0.230 0.200 0.422 0.367 0.37 0.230 0.175 0.422 0.321 0.32 0.410 0.752 0.53
Colombo 01 0.310 0.290 6.223 5.822 5.82 0.380 0.285 7.629 5.721 5.72 0.780 15.659 10.96
Colombo 01 0.280 0.260 1.024 0.951 0.95 0.288 0.205 1.053 0.750 0.75 0.540 1.975 1.38
Colombo 01 0.260 0.240 0.814 0.752 0.75 0.278 0.190 0.871 0.595 0.59 0.480 1.503 1.05
Narammala 0.270 0.250 0.172 0.159 0.16 0.280 0.196 0.178 0.125 0.12 0.500 0.318 0.22
Narammala 0.330 0.310 7.642 7.179 7.18 0.380 0.288 8.800 6.670 6.67 0.800 18.527 12.97
Narammala 0.310 0.300 6.005 5.811 5.81 0.360 0.280 6.974 5.424 5.42 0.790 15.303 10.71
Alawwa 0.590 0.555 25.521 24.007 24.01 0.530 0.480 22.926 20.763 20.76 1.000 43.257 30.28
Alawwa 0.460 0.440 6.648 6.358 6.36 0.470 0.385 6.792 5.564 5.56 0.960 13.873 9.71
Colombo 02 0.320 0.280 11.103 9.715 9.71 0.298 0.255 10.339 8.847 8.85 0.615 21.338 14.94
Alawwa 0.270 0.240 0.902 0.802 0.80 0.274 0.198 0.916 0.662 0.66 0.450 1.504 1.05
Colombo 01 0.260 0.250 0.985 0.947 0.95 0.280 0.215 1.061 0.815 0.81 0.570 2.159 1.51
Colombo 07 0.310 0.245 1.617 1.278 1.28 0.282 0.216 1.471 1.127 1.13 0.585 3.052 2.14
Colombo 07 0.300 0.260 3.075 2.665 2.67 0.284 0.214 2.911 2.194 2.19 0.565 5.792 4.05
Colombo 07 0.270 0.240 5.443 4.838 4.84 0.272 0.197 5.483 3.971 3.97 0.430 8.668 6.07
Colombo 07 0.330 0.280 2.840 2.410 2.41 0.296 0.264 2.547 2.272 2.27 0.610 5.250 3.67
Colombo 07 0.325 0.275 4.295 3.634 3.63 0.299 0.265 3.951 3.502 3.50 0.612 8.087 5.66
Colombo 07 0.315 0.270 2.033 1.743 1.74 0.283 0.226 1.826 1.459 1.46 0.561 3.621 2.53
Colombo 07 0.310 0.280 5.422 4.898 4.90 0.326 0.273 5.702 4.775 4.78 0.715 12.507 8.75
Colombo 07 0.270 0.240 2.151 1.912 1.91 0.272 0.194 2.167 1.545 1.55 0.430 3.425 2.40
Colombo 07 0.265 0.240 3.760 3.406 3.41 0.273 0.197 3.874 2.796 2.80 0.450 6.386 4.47
Colombo 07 0.310 0.275 2.671 2.369 2.37 0.297 0.264 2.559 2.274 2.27 0.610 5.255 3.68
Wellampitiya 0.240 0.225 0.842 0.789 0.79 0.272 0.186 0.954 0.652 0.65 0.460 1.614 1.13
Colombo 08 0.230 0.210 0.761 0.694 0.69 0.268 0.182 0.886 0.602 0.60 0.425 1.406 0.98
Kurunagala 0.270 0.240 0.183 0.162 0.16 0.270 0.185 0.183 0.125 0.13 0.470 0.318 0.22
Kurunagala 0.600 0.580 38.538 37.253 37.25 0.526 0.480 33.785 30.830 30.83 1.000 64.230 44.96
Kurunagala 0.325 0.285 5.835 5.117 5.12 0.350 0.285 6.284 5.117 5.12 0.710 12.747 8.92
Kerawalapitiya 0.280 0.250 0.880 0.786 0.79 0.276 0.191 0.867 0.600 0.60 0.490 1.540 1.08
Katubedda 0.290 0.280 6.003 5.796 5.80 0.336 0.275 6.955 5.692 5.69 0.725 15.007 10.51
Katubedda 0.310 0.290 4.308 4.031 4.03 0.320 0.280 4.447 3.892 3.89 0.610 8.478 5.93
Wellampitiya 0.280 0.240 1.244 1.066 1.07 0.286 0.202 1.270 0.897 0.90 0.485 2.154 1.51
Peliyagoda 0.330 0.320 4.623 4.483 4.48 0.380 0.290 5.324 4.063 4.06 0.800 11.208 7.85
Kerawalapitiya 0.270 0.240 0.405 0.360 0.36 0.268 0.183 0.402 0.274 0.27 0.465 0.697 0.49
Kerawalapitiya 0.265 0.245 0.320 0.296 0.30 0.270 0.187 0.326 0.226 0.23 0.475 0.574 0.40
Ambepussa 0.600 0.580 25.348 24.503 24.50 0.527 0.482 22.264 20.363 20.36 1.000 42.247 29.57
Ambepussa 0.270 0.240 0.450 0.400 0.40 0.274 0.198 0.457 0.330 0.33 0.485 0.808 0.57
Colombo 13 0.350 0.335 9.008 8.622 8.62 0.400 0.310 10.295 7.979 7.98 0.860 22.134 15.49
Colombo 13 0.370 0.360 15.948 15.517 15.52 0.425 0.312 18.318 13.448 13.45 0.870 37.499 26.25
Colombo 13 0.370 0.360 7.443 7.242 7.24 0.410 0.298 8.248 5.995 5.99 0.865 17.401 12.18
Mirigama 0.600 0.580 42.164 40.758 40.76 0.515 0.485 36.190 34.082 34.08 1.000 70.273 49.19
Ambepussa 0.340 0.280 11.943 9.835 9.84 0.386 0.278 13.559 9.765 9.77 0.720 25.291 17.70
Mirigama 0.560 0.470 49.491 41.537 41.54 0.471 0.470 41.625 41.537 41.54 0.970 85.725 60.01
Ambepussa 0.270 0.240 0.480 0.427 0.43 0.260 0.180 0.462 0.320 0.32 0.475 0.845 0.59
Mirigama 0.270 0.240 0.145 0.129 0.13 0.258 0.175 0.139 0.094 0.09 0.465 0.250 0.17
Ambepussa 0.280 0.250 0.783 0.699 0.70 0.266 0.181 0.744 0.506 0.51 0.490 1.370 0.96
Colombo 07 0.300 0.260 1.836 1.591 1.59 0.286 0.202 1.750 1.236 1.24 0.500 3.060 2.14
Colombo 02 0.310 0.270 1.762 1.535 1.54 0.310 0.245 1.762 1.393 1.39 0.615 3.496 2.45
Colombo 02 0.320 0.310 4.027 3.901 3.90 0.320 0.278 4.027 3.498 3.50 0.715 8.997 6.30
Colombo 02 0.330 0.315 4.026 3.843 3.84 0.321 0.279 3.916 3.403 3.40 0.710 8.661 6.06
Colombo 02 0.320 0.310 6.066 5.877 5.88 0.374 0.288 7.090 5.460 5.46 0.765 14.502 10.15
Colombo 01 0.260 0.210 0.472 0.381 0.38 0.230 0.173 0.417 0.314 0.31 0.380 0.690 0.48
Colombo 01 0.300 0.280 18.174 16.962 16.96 0.323 0.278 19.567 16.841 16.84 0.713 43.194 30.24
Colombo 01 0.260 0.200 0.890 0.685 0.68 0.245 0.186 0.839 0.637 0.64 0.425 1.455 1.02
Colombo 01 0.270 0.210 0.741 0.577 0.58 0.250 0.190 0.687 0.522 0.52 0.430 1.181 0.83
Colombo 01 0.310 0.275 2.803 2.487 2.49 0.305 0.265 2.758 2.396 2.40 0.620 5.607 3.92
Colombo 01 0.315 0.270 4.626 3.965 3.96 0.323 0.270 4.743 3.965 3.96 0.713 10.471 7.33
Colombo 01 0.290 0.265 1.827 1.670 1.67 0.280 0.265 1.764 1.670 1.67 0.540 3.402 2.38
Colombo 01 0.260 0.220 0.745 0.631 0.63 0.272 0.186 0.780 0.533 0.53 0.450 1.290 0.90
Colombo 01 0.260 0.230 0.718 0.635 0.63 0.264 0.177 0.729 0.489 0.49 0.440 1.215 0.85
Colombo 02 0.270 0.230 1.074 0.915 0.91 0.268 0.192 1.066 0.764 0.76 0.470 1.869 1.31
Colombo 02 0.320 0.300 5.911 5.541 5.54 0.382 0.279 7.056 5.154 5.15 0.795 14.685 10.28
Colombo 02 0.310 0.290 2.759 2.581 2.58 0.299 0.266 2.661 2.367 2.37 0.630 5.606 3.92
Colombo 02 0.310 0.290 2.572 2.406 2.41 0.298 0.268 2.473 2.224 2.22 0.624 5.178 3.62
Colombo 02 0.430 0.400 43.757 40.705 40.70 0.450 0.368 45.793 37.448 37.45 0.910 92.603 64.82
Colombo 02 0.340 0.320 2.442 2.299 2.30 0.375 0.281 2.694 2.019 2.02 0.800 5.747 4.02
Colombo 02 0.260 0.220 0.672 0.569 0.57 0.266 0.194 0.688 0.502 0.50 0.460 1.189 0.83

Pells & Turner [1]

Location

Kulhawy & Carter [14] Rowe & Armitage [15]

Table A2 – Results on the Estimation of Rock Mass Deformability Modulus through Back Analysis 
(𝑬𝑬𝒎𝒎𝒎𝒎) with all Five Design criteria 

 




