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Review on the Estimation of Static Deformability
Modulus of Rocks and their adoptability in Different

Rock Masses

M.N.C. Samarawickrama, U.G.A. Puswewala, H.S. Thilakasiri and
K.M.L.A. Udamulla

Abstract: The aim of this study is to review the different mechanisms employed in the
estimation of static rock mass deformability modulus (E,,) in rock engineering applications and to
investigate the adoptability of the identified mechanisms in different rock masses. The paper discusses
different evaluation criteria through experimental, empirical and other means, with their merits and
demerits, including influential factors. It is known that deformability modulus of intact rock depends
on the imposed stress, strain rate and the confining stress on the rock sample as well as the rock
texture and structure. The results generated for E,, by different in-situ tests are different and an
appropriate in-situ test based on the rock mass conditions should be employed to obtain reasonable
results. Empirical criteria are found to produce results of reasonable precision if appropriately
adopted for specific rock mass conditions, while the back analysis method is widely adopted as an in-
situ estimation measure for the design of rock-sockets and tunnel support. It has also been reported
that substantial reduction in E,; occurs due to schistosity and larger test volumes, while it is sensitive
to stress and discontinuity conditions. In this work, specific recommendations are made on the
estimation of E,, for different types of rock masses based on the findings and reviews reported in the
literature.

Keywords: Rock mass deformability modulus, Intact rock deformability modulus, In-situ testing,
Empirical methods

1. Introduction designers have frequently sought empirical
means in the estimation of E,,, which is rapid
Reasonable estimation of the rock mass and inexpensive, though it is conservative.

deformability modulus is vital in any
engineering application in rock masses as it is
the best representative parameter of the pre-
failure mechanical behaviour of the intact rock
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Hence in this study, an effort is made to
investigate the applicability of existing
empirical criteria in the estimation of static
deformability modulus of rock masses (E,),
first with respect to the general rock
engineering practice and secondly with respect
to their adoptability in hard crystalline rock
masses.

Following aspects are covered in this work:

> Investigation of different mechanisms
used in the estimation of E,,, their merits,
demerits and the related influential factors
on the parameter.

> Review of the adoptability of the identified
mechanisms and empirical criteria into
design practices in different rock masses.

» Recommendation of appropriate measures
to be considered in the estimation of E,, in
different rock masses.

2. Estimation of Deformability
Modulus of Rock Mass

Palmstrom and Sing [4] state that there are
number of laboratory tests on rock specimens
as well as in-situ methods available for the
direct evaluation of E,,, while there are also a
substantial number of indirectly evaluated
empirical ~ (correlation) and  analytical
(equivalent continuum approach) criteria.

21 In-Situ Methods

211  Direct In-Situ Testing

When considering the adoptability of direct in-
situ evaluation methods in competent hard
crystalline rocks, Goodman Jack Test (GJT) is
preferred over Pressuremeter Test (PT) due to
several reasons. One of the main seasons is the
capacity restrictions in the latter, which can
apply only around 30MPa. The second reason
is the failure of PT membrane in the fractured
rocks. However, the results obtained from GJT
needs considerable post treatments to obtain
the actual E,, from the calculated E,, [5].
Considering the applications in deeper and
directly inaccessible test locations such as rock
sockets, the preferred direct methods are
Borehole/Goodman Jack Test (GJT) [6] and
Pressuremeter/Dilatometer Test (PT) [7] as
other methods do not facilitate the
performance of the test at greater depths.

2.1.2 Indirect In-situ Testing

In addition, indirect geophysical methods such
as Resonant Column Testing and Ultrasonic
Pulse Testing on intact rock as well as Down-
the-hole and Cross-hole sonic logging on rock
mass are available to estimate E; and
E,, respectively, which are found to produce

results which agree reasonably with the results
obtained from direct in-situ tests [8].

2.2 Indirect Methods
221 Estimation of E,, wusing Young's
Modulus (E;) of Intact Rock

ASTM D7012-07 [9] specifies the laboratory
estimation of intact rock Young's modulus
(E;), in combination with the unconfined
compressive strength (o.) and the Poisson’s
ratio of the intact rock sample. With the stress-
strain behaviour during compression, it is
possible to obtain average, tangent and secant
Young’s moduli. The (E;) so obtained is used
to estimate (E,,) using empirical and analytical
methods described undersections 2.2.2 and
2.2.3, respectively. In the absence of directly
determined E;, it is possible to estimate the
same using the characteristic value of modulus
ratio (MR, the ratio, E;/o,, which is generally
found to be in a specific range for a particular
rock) and the o, [10].

2.2.2  Empirical Methods

There are a substantial number of empirical
formulae proposed by different researchers to
be used in the general rock engineering
practice. Information obtained through a
comprehensive literature review is reported in
Table 1 and most of the listed relationships
have been established through statistical
treatments performed on databases containing
in-situ  test data from different rock
engineering applications and rock lithologies.
Careful observation of equations reveals that
there are mainly two types of equations to
estimate the rock mass deformability modulus.
In the first category, E,, is directly related to
one or more parameters, while in the second
category, E,, is expressed in terms of E;
accompanied by other related parameters.
Moreover, some authors have proposed
relationships among different combinations of
parameters to facilitate the application of the
relationship based on the parameter
availability. In addition to the above set of
equations, a separate set of relationships has
been proposed by different authors to estimate
the Young's modulus (E;) of intact rock as
reviewed by Zhang [11]. These relationships
are mainly related to the petrophysical
properties such as porosity, density, hardness,
water content, Schmidt hammer rebound
number, and P and S wave velocities of
different lithologies. Nevertheless, it is not
practical to apply all the equations presented
in Table 1 for all the rock engineering
applications encountered due to the limitations
in quality and adequacy of test data, necessity for
further establishment, and the differences
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in stress-strain behaviour of rock mass which
depends on the loading pattern of different
structures, ranging from dams, tunnels, slopes,
and foundations to socketed anchors and
shafts.

Moreover, many have pointed out that results
of the rock mass classifications may vary
considerably depending on the attributes of
the rock engineer, the measuring system
applied and the type of the project. Thus,
parameters that are derived based on such
systems will have a greater ambiguity [51]. In
order to estimate the E;, (when the laboratory
data is not available) the following equation
proposed by Hoek and Diederichs [38] can be
objectively adopted:
E; = MR * o, ... (68)
where MR is the Modulus Ratio, and ¢, is the
uniaxial compressive strength.

2.2.3 Analytical Methods

Li [52] proposes a graphical method to
represent the deformation modulus of rock,
which ultimately yields a useful analytical
solution to determine the E,, for jointed rocks.

Ebadi et al. [53] have incorporated the effects
of lateral stress (intermediate principal stress
and minimum principal stress) on the
analytical solutions proposed by Li [52] for the
E,, of jointed rocks.

Zoorabadi [54] identifies the shortcomings of
the empirical approach and proposes an
extended analytical solution to estimate the E,
of jointed rock, which has been -earlier
proposed by Li [52]. This is with a combination
of the geometrical properties of discontinuities
and E; and finally incorporating the confining
effects.

2.3 Back Analysis Method

Back analysis methods in rock engineering
practice are classified into three broad
categories: stress back analysis, displacement
back analysis, and strain back analysis. Out of
the three options, the displacement
measurement is the easiest and most
convenient method and hence it is widely
adopted in the derivation of rock related
engineering parameters [55].

Historically, back analysis has been used often
to estimate the E,, in tunnels and especially in
rock sockets [15, 56, 57, 58, 59, 60]. In some of

the studies, the technique has been used to
develop new equations or verify the validly of
existing empirical equations to estimate E,
while some have been used to verify the
compatibility of different design criteria, with
the comparison of results derived through
back analysis and in-situ E,,. Moreover, in
some cases, this technique has been used
simultaneously to develop empirical equations
to estimate E,,, while verifying the accuracy of
new design criteria.

3. Review on the Adoptability of
Existing Rock Mass Deformability

Estimation Mechanisms in
Different Rock Masses
It has been identified that there are a

substantial number of controlling factors on
the value of E,,,, either in the direct or indirect
form. In order to choose the most appropriate
value for the design, it will be beneficial for a
rock foundation engineer to consider the
aspects discussed below.

3.1 Factors to be considered
Laboratory and In-situ Test Results

in using

3.1.1 Factors that affect the Deformability
Modulus of In-tact Rock

Modulus of elasticity of intact rocks increases
with increase in the rate of the applied stress,
and so does the axial strain at failure. The
diametrical strain at failure decreases with
increase of loading rates [61]. Similar
observations have been made by Malik et al.
[62] for brittle Basalt, which is highly sensitive
to strain rate.

Hsieh et al. [63] report that actual elastic
behaviour of in-tact rock samples is non-linear,
due to the coexisting processes of closure,
sliding and compaction of pre-existing cracks
within the elastic stress range of the intact
sample, and hence the derived tangent
modulus is found to be stress dependent.

It has been shown that intact rock deformation
modulus increases significantly with the
confining stress [11]. This fact has even been
confirmed by Ebadi et al. [53] by using
analytical techniques for Schist.

However, it has been revealed that, when
rocks are tested under tri-axial conditions, the
non-linearity and the stress dependency of
their elastic behaviour is minimal for hard,
crystalline or homogeneous rocks of low
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porosity, while these factors significantly affect
porous, clastic or closely jointed rocks [12].

3.1.2 Factors that Affect the Deformability
Modulus of Rock Mass

It has been shown that rock mass moduli
values obtained from different test methods
even for the same rock mass produce
significantly different results [3]. According to
Bieniawski [20], a single testing method, such
as the flat jack test (FJT), can lead to a wide
scatter in the results even where the rock mass
is very uniform.

When comparing the results obtained from
different test methods, generally, the values
obtained through GJT and the plate loading
test (PLT), both produce lower results
compared to plate jacking test (PJT) and on
average these should be multiplied by a factor
Rp = 25 to be compared with the PJT
measurements [4]. Moreover, Palmstrom and
Singh [4] comment that PJT measured by
extensometers in drill holes gives generally the
best results. Interestingly,
Pressuremeter/Dilatometer test has been
found to produce lower results compared to
GJT, PLT and FJT results [5].

Contradictorily, Galera et. al. [18] suggest that
Borehole Expansion Tests (mostly PT) are
found to produce the best results.

3.2 Factors to be Considered in using Results
obtained from Empirical Estimation Methods
Annexure 1 comprehensively discusses the
merits and demerits of the empirical equations
reported in Table 1. This is a summary of the
reviews made by different authors on the
respective equations following the comparison
of results reached through in-situ tests,
reanalysis with additional in-situ data or re-
evaluation and refinement of the same
equations  through advanced statistical
packages, techniques and evaluation methods.

It is also noted that the empirical methods do
not consider either the effect of scale and stress
on rock mass deformability or the anisotropy
of rock mass deformability.

It has been identified that the estimated values
from various empirical methods can be very
different for some of the rock masses. It is also
noted that the highest or lowest estimated
values are not from a single empirical method.
For example, an empirical method may give
the highest or lowest estimated value for one

rock mass but an estimated value in the mid-
range for a different rock mass. One possible
reason is that the empirical methods were
developed based on databases of different
sources.

Therefore, it is difficult or impossible to decide
which method is the most accurate for a given
rock mass. Nevertheless, most of the
experienced researchers advise the use of at
least two or more empirical methods in the
evaluation of E,,, coupled with a direct
estimate from one in-situ testing and one
obtained from an indirect geophysical method.

3.3 Adaption of Results Obtained from
Different Mechanisms for Different Rock
Masses

3.3.1 Rock Mass Parameters

Quoting the findings of many researchers,
Zhang [11] states that it becomes a very
challenging task to precisely determine the E,
value for a rock mass due to different types of
discontinuities such as joints, bedding planes,
folds, shear zones and faults contained in
natural bedrock masses.

Basically, deformation modulus of a rock mass
is made up of two components: one due to
deformation of the intact rock; the other due to
the deformability of the joints and
discontinuities [64] and hence it depends on
the Young’s Modulus of rock type and shear
strength of joints [65].

Generally, it has been observed that the
deformation behaviour of better-quality (say
RQD >50%) rock masses is controlled by the
geological discontinuities; while for poorer-
quality rock masses (say RQD<50%) the
deformation of the intact rock pieces
contributes to the overall deformation process
[44]. Within better-quality rock masses, the
intact deformability is mainly controlled by the
embedded weaker intact rock pieces [35].

The effects of joints have been analytically
established by Li [52], who concluded that the
deformability modulus ratio (E,/E;) (also
referred to as modulus reduction ratio [19]) of
a rock block containing a through going single
joint set reaches its minimum (around 0.3)
when the loading angle (measured from
normal to the discontinuity plane), 6 = 0°
when kg >k, /2 (ks-joint shear stiffness, k-
joint normal stiffness) and the ratio reduces to
its minimum level at around 6 = 45° when
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ks =0. In both cases he has observed that
E,./E; ratio approaches 1 when 6 = 90°. Based
on his stereographic projection analysis, he
concluded that E,, reduces to as far as 0.15E; to
0.4E; in rock masses of 3 joint sets of different
dips and dip directions with constant joint
spacing, shear and normal stiffness levels.
Following the findings of Li [52], Ebadi et al.
[53] have analytically shown that, for a rock
block containing several joints, the variation of
the E,,/E; ratio is insignificant for increase in
the lateral stresses when 6 < 70°, while this
ratio dramatically increases and approximately
is the same for all lateral stress ratios
(01/03ranged from 0 to 5 and oy/0,ranged
from 1 to 3.3) when 6 > 70°. Moreover, the
analysis has also revealed thatE,, increases
with increase in joint spacing due to the lesser
extent of rock fracturing, and increases of
E,, beyond a spacing of 0.1 m is insignificant,
e.g., it does not reach E;even at a spacing
larger than 1.0 m. Theoretically, Ebadi et al.
[53] have observed that increase in E; causes
increase in E,, in a rock block with a single
joint set and it is mainly due to comparatively
lesser overall rock displacement contributed
by the intact zones having greater elastic
range.

When considering the rock discontinuity
parameters, Rock Quality Designation (RQD) is
the simplest parameter; but it is only one of the
joint related factors that affect the deformation
modulus of rock masses and it does not cover
other joint related characteristics [3]. Therefore,
expressions based on RQD provide least
reliable results [19, 20, 65]. Moreover, Zhang
and Einstein [3] highlight the fact of directional
variation of RQD in fractured rocks coupled
with insensitivity of RQD to discontinuity
frequency, which intensifies the deviation of
actual E,, from values derived through RQD
dependent empirical formulae. However,
Zhang [11] proposes volumetric discontinuity
frequency or core boring, scanline sampling
and/or wave velocity measurements at
different directions to determine an average
RQD for the rock mass to eliminate the
directional dependence of RQD and thus E,,.
Despite the deficiencies of RQD, it has been
identified to have a greater indirect bearing on
the rock mass deformation modulus [66].

It is recommended that Rock Mass Rating
(RMR), which is the next common parameter
used in the evaluation of E,,, should not be
applied for massive rock masses [4], while it is
observed to produce better results when it is

employed in jointed rock masses. Yang [5]
identifies the inherent drawbacks in using
RMR, especially in estimating the parameter
for very poor-quality rocks [44]. Nejati et al.
[50] state that RMR based empirical equations
provide satisfactory results. They also observe
that five RMR rating parameters have a direct
but different individual level of influence on
the E,, value. The influence is greater from
joint related parameters and is least from
groundwater conditions.

When considering applicability of Q system,
which is popular mainly in the tunnelling
field, Palmstrom and Singh [4] recommend it
to be adopted in estimating the E,, in very
strong (0.> 150 MPa), massive rocks. Similar
to RQD, the directional dependency of Q on
estimating E,, has been proposed to be
eliminated by adopting an oriented Q, and
normalised Q. using an oriented RQD,, and a
Jr/Ja(Jr-rating for joint surface roughness of
least favourable set or discontinuity, /, -rating
for joint alteration, discontinuity filling of least
favourable set or discontinuity) ratio relevant
to the loading or measurement direction [42].

Yang [5] proposes Geological Strength
Index (GSI) as an alternative to RMR to
estimate E,, to capture the missing

information in RMR through the physical
appearance of the recovered core sample
material. However, this has been later
challenged by Galera et al. [18] quoting the
inherent empiricism involved in  GSI
estimation instead of advanced quantitative
data, and it is only recommended to be
adopted for weak poor-quality rock masses
with RMR<20.

Amongst the different rock mass classification
systems, a more recently developed Rock Mass
Index (RMi) is found to produce better
estimates in jointed rock masses compared to
Q system, while it performs better than both
RMR and Q systems in massive rocks masses
[4]. As described earlier, use of RMR is
preferred over equations with RQD alone, or
use of GSI. Ramamurthy [32] points out that
neither of the aforementioned classification
systems produces satisfactory results on
modulus ratio (MR), as the change in the MR
from very good to very poor-quality rocks is
insignificant and thus proposes joint factor (/5)
model to estimate the modulus ratio, which is
found to be more sensitive to rock quality.
Similar argument has been made by Sonmez
[34] on RMR, Q and GSI, who observes that
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these systems yield unacceptably high
deformation moduli (greater than intact elastic
modulus) for high quality rock masses
composed of soft intact rock zones and suggest
to give more emphasis on the deformation
behaviour of intact rock zones than the
discontinuity conditions for such rock masses.
Generally, the deformation modulus evaluated
from classification systems seems to be valid
only for the strongest rocks and found to
generate significantly higher values for weak
rocks than the relevant in-situ value [4].

Considering the deficiencies identified in
empirical equations based on different rock
mass classification systems, researchers have
sought relationships which involve both intact
as well as rock mass classification parameters.
Most of the findings are encouraging as
equations which incorporate E; with rock mass
classification parameters are found to produce
better results [5], [19], [34]. E;seems to be
considerably highly correlated with E,, as well
as the other rock mass classification
parameters, while the correlation between o,
and E,, is found to be the least [5].

3.3.2 Rock Anisotropy

The directional dependency of the engineering
parameters  of  rock  masses  arises
predominantly  due  the  discontinuity
orientation and its engineering behaviour, and
secondarily due to the effects of rock grains.

The mechanical effects rock mineralogy and
rock texture become important in the
evaluation of E; in rock masses where the
discontinuity spacing is considerably large.
The most conveniently identifiable feature
with respect to above aspects is schistosity,
common in metamorphic rock masses.

Quoting a number of references, Zhang [11]
states that around 75%-45% reduction in E,, is
observed through a change of the direction of
deformation modulus measured parallel to
stratification ~ plane to that measured
perpendicular to stratification plane. In order
to alleviate this effect, Sonmez et al. [34]
propose to adopt E; and RMR in the directions
parallel to and perpendicular to such
laminations and to come up with a two moduli
approach in the corresponding two directions.

3.3.2 Stress Dependency

Another main drawback in the empirical
equations is the disregard of the stress factor.
Similar to the case of in-tact rock, E;, Torbica

and Lapcevi¢ [65] state that E,, is also stress
dependent (both vertically imposed and
lateral) and they suggest that the variation of
E, in jointed rock mass approaches the
behaviour of E,, of monolithic rock beyond a
certain depth because shear strength of rock
joints tends to increase to the state
representing monolithic conditions when
depth is large. This has been analytically
proven and the stress effect is pronounced in
jointed rock masses, especially towards the
ground surface due to greater deformability of
discontinuities along with block rotation [54].
Schock [67] has experimentally proven a
similar finding where dynamic elastic
modulus approaches the value of its static
equivalent due to the closure of voids.

3.3.3 Scale Effect

Obviously, scale effect has a great bearing on
E,, as larger the test volume greater the effects
of discontinuities. Based on analysis of a large
number of laboratory data and corresponding
field test data, it has been revealed that
volumetric change in the test sample from
laboratory scale (~10-% m?) to field scale (~103
m3) will cause a reduction of around 67%; the
larger the test volume, lower the E,,, and lesser
the variability of results [18].

As test volume increases, this reduction can
even be between 20% to 60% of the
instrumented laboratory uniaxial compression
test values on intact samples as identified by
Heuze [68].

This fact is evident in most of the instances as
directly obtained E,,values are different from
the E;,, magnitudes derived from the back
analysis of the elastic component of the load-
displacement curves of actual structural load
applications, especially as the latter cases
depend on the actual volume of rock
influenced by the load application.

3.4 Adoptability of E,, into Design Practise

Based on the above discussion there are two
basic means of obtaining the E,, for the design,
viz., through field tests and through empirical
means.

When adopting the direct in-situ test results,
many practitioners recommend to perform at
least two types of in-situ tests (e.g., plate
bearing test and dilatometer test) in the same
location to alleviate the discrepancies between
results obtained from different in-situ test
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methods. However, except for very sensitive
structures, such strategies are limited in
practice due to time and cost involved.

In adopting empirical systems, Sonmez et al.
[34] propose at least one rock classification
system to be used to incorporate the effects of
discontinuity properties, while Barton et al.
[69] propose to adopt multiple rock mass
classification systems for the same site to
arrive at a reasonable value for E,,.

When using the rock mass classification
systems, the limitations of the respective
classification systems should be borne in mind
and it is recommended not to apply any
correlations or transition equations between
the systems (as suggested by different
authors), as mathematical equations which are
of different levels of accuracy can produce
substantially misleading results and may give
rise to incorrect values. Instead, as a good
practice, the various parameters involved in
the actual systems should be given their
relevant ratings and the classification value for
each system needs to be arrived independently
[4]. Moreover, when obtaining the rock mass
classification parameters, it will be imperative
to obtain only the significant and intrinsic
parameters of the rock which reflect the rock
mass behaviour and each parameter must
represent itself exclusively. Most importantly,
parameters so obtained should be easily
measurable and be linked in such a way that
the quality of the rock mass is reflected in
terms of its strength and modulus to capture
the reduction in strength and deformability
from its intact form [32].

To optimise the procedure, National
Academies of Sciences, Engineering, and
Medicine (NASEM) [39] proposes a sequence
of steps to be adopted in the design process. It
suggests to initiate with a site in-situ test (such
as borehole jack) and then to predict E,,, by an
appropriate empirical correlation and carryout
a cross-check on the in-situ measured values.
As the third step, it proposes to perform a
geophysical method (such as downhole
seismic; compression wave velocity), which
generally provides a reasonable upper-bound
check on the rock mass modulus. In order to
reconfirm an upper bound solution, NASEM
[39] proposes to perform laboratory uniaxial
compression tests, to test the consistency with
the observations of Heuze [68] to ascertain
whether the field rock mass modulus values
are in the range of 20% to 60% of intact rock

modulus. To check the accuracy reached, it
mentions that the mean value of E,
determined from the in-situ tests shall be in
the range of the values predicted from the
empirical correlations.

Since it has been identified that rock mass
classification systems provide unreasonably
higher E,, values for weak massive rocks, it is
recommended to estimate the deformation
value by laboratory test results and reasonably
adjust for the scale effect [4].

In mines, the intact rock properties (E;) are
simply downgraded and used as inputs for
numerical modelling. The output of the model
is then calibrated based on the actual
observations made from rock mass behaviour,
through which the rock mass parameters are
fine-tuned. Based on the results of large
number of data bases, numerical modelling,
and experience of mining site-based
practitioners, it has been established that the
relationship  E,;, = 30% — 50% of E; can  be
adopted in mine designs [70]. Considering the
wide uncertainty involved in obtained values
for E,,, Bieniawski [20] recommends an in-situ
modulus of deformation with an accuracy of
more than 20% will be sufficient for practical
design purposes.

The values so obtained shall be further fine-
tuned for the disturbance, which is usually a
common phenomenon in mines and tunnels
due to blasting and mechanical excavation.
Appropriate disturbance factors (D) ranging
from 0 (excavation with  minimum
disturbance) to 1 (production/poor blasting)
have been proposed by Hoek et al. [46] for
different excavation criteria and the respective
factors can be appropriately incorporated to
the empirical formulae used to obtain the E,,.

The importance of rock mass deformability
arises in the design of rock sockets for pile
foundations when elastic solutions are
employed in the estimation of the bearing
capacity components (both skin friction and
end bearing) of the rock sockets. Rowe and
Armitage [15] propose to use Equation (5), in
the estimation of E,, for their proposed elastic
solutions, with a partial safety factor of 0.70 to
compensate any uncertainties, while Williams
and Pells [59] propose Equation (12) to
estimate the reduction in lateral confinement
(Em/E;) in the estimation of ultimate skin
friction of rock sockets. O'Neill et al. [71]
propose modulus reduction factors presented
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in Table 2 by considering the joint
characteristics, for the design of rock sockets.
In the design of rock sockets, Load and
Resistance Factor Design for Bridge Design
Specifications (LRFDBDS) [72] proposes to
adopt the least of the two values obtained
for E;, obtained directly from intact core
sample test and from Equation (69).

Table 2 - Modulus Reduction Factors Based
on RQD Levels [71]

RQD (%) Em/E;
Closed Joints | Open Joints

100 1.00 0.60

70 0.70 0.10

50 0.15 0.10

20 0.05 0.05
Em=Ei[’2—’:lt ... (69)
where,

E; - Obtained from intact core sample test, and
[EE—'"] - Obtained from Table 2.
L7t

4. Conclusions and
Recommendations

Based on this review work, following
conclusions and recommendations can be
made.

1. The intact deformability modulus (E;)
results obtained from laboratory tests shall
be post treated for stress and strain rate
dependency as well as for the confining
stress, especially for porous, clastic or
closely jointed rocks.

2. PT test is found to produce the lowest
results among other in-situ methods,
followed by GJT, PLT and FJT. The highest
values are produced by PJT and the value
is generally around 2.5 times the GJT and
PLT generated values.

3. Considering the practical adoptability and
accuracy, PJT measured by extensometers
in drill holes generally produces the best
results, while PT is found to perform well
for weak but better quality (less fractured,
RQD>50%) rock masses. For strong
crystalline and highly fractured rock
masses, GJT is preferred over PT.

4. Most of the empirical estimation criteria
are insensitive to stress, scale and

anisotropy. The actual deformability
behaviour of the rock mass is stress
dependent both vertically and
horizontally, while the effects of vertical
stresses become negligible after a certain
depth. E,, reduces from 20% to as far as
67% as the test volume increases from
laboratory  scale to in-situ  scale.
Orientation of discontinuities further
downgrade the estimated E,, value of a
jointed rock mass with a single set of joints
to a value of around 0.3 E;, when the
loading angle is 0° at higher joint shear
stiffness levels and reaches its minimum
value when the loading angle is 45° in
cases where joint shear stiffness is
minimum. When the loading angle is 909,
E,, can be approximated as E; under any
joint shear stiffness level. Moreover, the
reduction in E,, will be as low as 0.15 E; in
a rock mass of 3 sets of joints. It has been
further reported that lateral stress effects
on E,, of jointed rocks has a profound
effect when the loading angle increases
beyond 70°. The value obtained depends
also on joint spacing (especially <0.1 m)
and schistosity (~75% to 45% reduction).

Depending on the rock mass quality and
the intact rock strength levels, following
adjustments are recommended.

(@) Since the deformation behaviour of
better-quality (RQD>50%) rock masses
is controlled by the geological
discontinuities, special attention is
needed and results should be adjusted
for discontinuity  orientation as
mentioned in Conclusion 4.

(b) However, in better-quality rock
masses, if weaker intact rock zones
occur in between the discontinuity
planes, then it is emphasised to be
alert on intact deformability behaviour
in such zones and appropriate post
treatments on intact parameters
should be carried out as mentioned in
Conclusion 1, and for the anisotropic
characteristics such as schistosity as
mentioned in Conclusion 4.

(c) Attention  and treatments as
recommended in Conclusion 5(b) can
be recommended for poorer quality
rock masses as well as the deformation
of the intact rock pieces contributes to
the overall deformation process for
such rock masses.
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Based on the summary of reviews on
empirical ~ equations  presented  in
Annexure 1, Equation (1) is found to
perform well in accommodating the lateral
confining stress correction on E;. For the
estimation of E,,,

(a) for the purposes of general rock
engineering applications:

i. RMR based: Equations (15) and (17)
are recommended for moderately
jointed rocks (RMR>30), while
Equations (19), (23) and (28) have been
found to perform comparatively well
in all the rock mass types. For weak
rock masses, Equation (29) has been
proven to work well.

ii. Q based: Equation (42) is found to be
valid for rock masses with Q > 1,
while Equation (43) performs well for
hard-fractured (strong-poor quality)
rock masses. For weak-fractured (poor
quality) rock masses, Equation (44) is
recommended. Moreover, the
overburden factor (H) incorporated in
Equation (63) produces satisfactory
results for weak fractured (poor
quality) rock masses under dry or
nearly dry conditions.

iii. GSI based: Equation (50) is found to
perform well in weak (0.<100MPa)
rock masses. The disturbance factor
(D) incorporated in Equations (56.a)
and (56.b) is found to perform well in
all rock mass types.

(b) for the purpose of foundation
designs, o, based Equation (5) is
recommended in rock-socketed pile
foundation designs, while RMR based
Equation (18) and GSI based Equation
(40) are also recommended in the
design of foundations. However,
Equations (53) and (58), which are
based on GSI, are found to be
inappropriate for the foundation
design aspects, especially  in
weathered rock masses.

(c) for massive (least jointed) -weak rocks,
it is recommended to adopt the
laboratory estimated E; and adjust for
scale effect [4].

Nevertheless, it should be noted that this
review is based on the existing empirical
mechanisms recommended by different
researchers with different data bases,

parameters and analytical techniques.
Hence the above conclusions and
recommendations may be subjected to
change based on future findings.

7. Considering the outcomes mentioned in
Conclusion 6, it is obvious that, different
empirical criteria generate different values
of E,, for the same type of rock mass.
Hence practitioners recommend to use at
least two or more empirical methods in the
same location and estimate a reasonable
value for E,,. If the results need to be more
accurate, additional one direct in-situ test
and one indirect geophysical method are
further recommended to be performed to
alleviate the discrepancies arising from
different mechanisms.

8. Rock mass deformability estimated
through back analysis mechanism is found
to be used in many rocks related
engineering applications, especially in
tunnel support design, and is quite
popular in rock-socket design in the
construction of bored piles due to the
comparatively greater depth at which the
parameter needs to be estimated using
direct in-situ test method.
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